Nav: Home

'Poring over' DNA

October 11, 2016

(Boston) -- In a future of personalized medicine, doctors may quickly glean the changes in the DNA sequences of patients that predispose them to specific diseases or determine the most appropriate therapeutic approach simply by analyzing a saliva sample. At present, however, reading DNA sequences from genomes using current next generation sequencing methods is still a costly endeavor restricted to well-equipped laboratories.

Now, Church's team at Harvard's Wyss Institute for Biologically Inspired Engineering and the Harvard Medical School developed a new electronic DNA sequencing platform based on biologically engineered nanopores that could help overcome these limitations. The method is reported in PNAS.

"In this study, we have explored the foundation for a highly scalable, accurate, single-molecule DNA sequencing platform with the potential for extensive sampling of environmental genomes, of pathogens as well as long DNA reads at lower costs, transforming precision medicine," said Church, Ph.D., who is Core Faculty Member at the Wyss Institute for Biologically Inspired Engineering at Harvard University, leader of its Synthetic Biology Platform, and Professor of Genetics at Harvard Medical School.

Since the 1990s, Church and other researchers have been investigating an alternative method to sequence DNA called nanopore-based sequencing-by-synthesis (Nanopore-SBS). Nanopores are tiny holes within a membrane separating two different electrolyte solutions. By applying a voltage differential, a continuous stream of small charged ion molecules can be made to pass through each pore, from one side of the membrane to the other. The changes in current produced allow researchers to interpret the molecules' shapes and tell their identities. In his previous Nano-SBS work, Church applied this principle to the electric discrimination of the four DNA nucleotides. With the help of the enzyme DNA polymerase, the DNA template of unknown sequence is copied into the complementary string composed of the four different nucleotides, each of them carrying a nucleotide-specific synthetic tag. The bulky tags are then successively released into the nanopore where they can be identified in real time.

The method is complicated when several DNA polymerase molecules copy their DNA template sequences into complementary nucleotide strings that get mixed up in the nanopore and also trigger a mixed series of changes in the pore's electric current.

"A key problem of the method at the time is that it lacked accuracy. This is because more than one complementary DNA strand is synthesized close to the nanopore opening, which produces jumbled electrical signals inside the pore that don't anymore relate to a single original DNA template molecule. But we have now engineered a new sequencing engine that gives robust and reliable sequencing results, can be loaded with different DNA templates, and can be highly multiplexed in a chip composed of hundreds nanopores individually addressable by electrodes," said P. Benjamin Stranges, Ph.D., a Postdoctoral Fellow working with Church and one of the two first authors of the study.

This new sequencing engine contains seven protein subunits that together build a suitable nanopore complex. Only one of them can be specifically conjugated to a DNA polymerase enzyme that is positioned right at the pore opening.

Being able to multiplex and individually analyze many DNA sequences electronically on the same chip at the same time, compared with conventional sequencing procedures performed with much less throughput, as well as expensive reagents and machines, has the potential to dramatically lower the costs of sequencing.

"We are able to identify the correct nucleotide between 79%-99% of the time and only found background events classified as true captures less than 1.2% of the time," said Mirkó Palla, Ph.D., the second first author of the study and a Research Fellow at the Wyss Institute. "This presents a remarkable advance over previous Nanopore-SBS systems."

Other authors of the study were from the Center for Genome Technology and Biomolecular Engineering and the College of Physicians and Surgeons at Columbia University, and Genia Technologies, which also provided the semiconductor chips.

"This technology is a great example of how our deep understanding of how living systems function at the molecular scale can be leveraged to develop breakthrough technologies, ," said Wyss Institute Founding Director Donald Ingber, M.D., Ph.D., who is the Judah Folkman Professor of Vascular Biology at Harvard Medical School and the Vascular Biology Program at Boston Children's Hospital, and also Professor of Bioengineering at the Harvard John A. Paulson School of Engineering and Applied Sciences. "By combining engineered macromolecular machines in the form of nanopores with synthetic membranes, and then integrating them with conventional electronics, the Church team has created a capability that could enable development of an entirely new class of low-cost gene diagnostics."
-end-
PRESS CONTACTS

Wyss Institute for Biologically Inspired Engineering at Harvard University
Benjamin Boettner, benjamin.boettner@wyss.harvard.edu, +1 917-913-8051

MULTIMEDIA CONTACT

Wyss Institute for Biologically Inspired Engineering at Harvard University
Seth Kroll, seth.kroll@wyss.harvard.edu, +1 617-432-7758

The Wyss Institute for Biologically Inspired Engineering at Harvard University uses Nature's design principles to develop bioinspired materials and devices that will transform medicine and create a more sustainable world. Wyss researchers are developing innovative new engineering solutions for healthcare, energy, architecture, robotics, and manufacturing that are translated into commercial products and therapies through collaborations with clinical investigators, corporate alliances, and formation of new startups. The Wyss Institute creates transformative technological breakthroughs by engaging in high risk research, and crosses disciplinary and institutional barriers, working as an alliance that includes Harvard's Schools of Medicine, Engineering, Arts & Sciences and Design, and in partnership with Beth Israel Deaconess Medical Center, Brigham and Women's Hospital, Boston Children's Hospital, Dana-Farber Cancer Institute, Massachusetts General Hospital, the University of Massachusetts Medical School, Spaulding Rehabilitation Hospital, Boston University, Tufts University, Charité - Universitätsmedizin Berlin, University of Zurich and Massachusetts Institute of Technology.

Harvard Medical School has more than 7,500 full-time faculty working in 11 academic departments located at the School's Boston campus or in one of 47 hospital-based clinical departments at 16 Harvard-affiliated teaching hospitals and research institutes. Those affiliates include Beth Israel Deaconess Medical Center, Brigham and Women's Hospital, Cambridge Health Alliance, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Pilgrim Health Care, Hebrew Senior Life, Joslin Diabetes Center, Judge Baker Children's Center, Massachusetts Eye and Ear Infirmary, Massachusetts General Hospital, McLean Hospital, Mount Auburn Hospital, Schepens Eye Research Institute, Spaulding Rehabilitation Hospital and VA Boston Healthcare System.

Wyss Institute for Biologically Inspired Engineering at Harvard

Related Engineering Articles:

Engineering a new cancer detection tool
E. coli may have potentially harmful effects but scientists in Australia have discovered this bacterium produces a toxin which binds to an unusual sugar that is part of carbohydrate structures present on cells not usually produced by healthy cells.
Engineering heart valves for the many
The Wyss Institute for Biologically Inspired Engineering and the University of Zurich announced today a cross-institutional team effort to generate a functional heart valve replacement with the capacity for repair, regeneration, and growth.
Geosciences-inspired engineering
The Mackenzie Dike Swarm and the roughly 120 other known giant dike swarms located across the planet may also provide useful information about efficient extraction of oil and natural gas in today's modern world.
Engineering success
Academically strong, low-income would-be engineers get the boost they need to complete their undergraduate degrees.
HKU Engineering Professor Ron Hui named a Fellow by the UK Royal Academy of Engineering
Professor Ron Hui, Chair Professor of Power Electronics and Philip Wong Wilson Wong Professor of Electrical Engineering at the University of Hong Kong, has been named a Fellow by the Royal Academy of Engineering, UK, one of the most prestigious national academies.
Engineering a better biofuel
The often-maligned E. coli bacteria has powerhouse potential: in the lab, it has the ability to crank out fuels, pharmaceuticals and other useful products at a rapid rate.
Pascali honored for contributions to engineering education
Raresh Pascali, instructional associate professor in the Mechanical Engineering Technology Program at the University of Houston, has been named the 2016 recipient of the Ross Kastor Educator Award.
Scaling up tissue engineering
A team at the Wyss Institute for Biologically Inspired Engineering at Harvard University and the Harvard John A.
Engineering material magic
University of Utah engineers have discovered a new kind of 2-D semiconducting material for electronics that opens the door for much speedier computers and smartphones that also consume a lot less power.
Engineering academic elected a Fellow of the IEEE
A University of Bristol academic has been elected a Fellow of the world's largest and most prestigious professional association for the advancement of technology.

Related Engineering Reading:

Engineering: An Illustrated History from Ancient Craft to Modern Technology (100 Ponderables)
by Tom Jackson (Editor) (Author), Tom Jackson (Editor)

From ancient aqueducts to soaring skyscrapers, explore engineering milestones over the centuries.

Combining engaging text with captivating images and helpful diagrams, renowned science writer Tom Jackson guides readers through the history of Engineering in the 7th installment of the groundbreaking PonderablesTM series.

Engineering is all around us. From our bridges, tunnels and skyscrapers, to our cars, computers and smartphones, engineering shapes our world and influences just about everything we see and do. And it s been that way for longer than you might think. From the... View Details


101 Things I Learned® in Engineering School
by John Kuprenas (Author), Matthew Frederick (Author)

Providing unique, accessible lessons on engineering, this title in the bestselling 101 Things I Learned® series is a perfect resource for students, recent graduates, general readers, and even seasoned professionals.
  
An experienced civil engineer presents the physics and fundamentals underlying the many fields of engineering. Far from a dry, nuts-and-bolts exposition, 101 Things I Learned® in Engineering School uses real-world examples to show how the engineer's way of thinking can illuminate questions from the simple to the profound: Why shouldn't soldiers... View Details


Basic Machines and How They Work
by Naval Education And Training Program (Author)

This revised edition of an extremely clear Navy training manual leaves nothing to be desired in its presentation. Thorough in its coverage of basic theory, from the lever and inclined plane to internal combustion engines and power trains, it requires nothing more than an understanding of the most elementary mathematics.
Beginning with the simplest of machines — the lever — the text proceeds to discussions of the block and tackle (pulleys and hoists), wheel and axle, the inclined plane and the wedge, the screw, and different types of gears (simple, spur, bevel, herringbone, spiral,... View Details


Re-Engineering Humanity
by Brett Frischmann (Author), Evan Selinger (Author)

Every day, new warnings emerge about artificial intelligence rebelling against us. All the while, a more immediate dilemma flies under the radar. Have forces been unleashed that are thrusting humanity down an ill-advised path, one that's increasingly making us behave like simple machines? In this wide-reaching, interdisciplinary book, Brett Frischmann and Evan Selinger examine what's happening to our lives as society embraces big data, predictive analytics, and smart environments. They explain how the goal of designing programmable worlds goes hand in hand with engineering predictable and... View Details


Engineering: A Very Short Introduction
by David Blockley (Author)

Engineering is part of almost everything we do--from the buildings we live in and the roads and railways we travel on, to the telephones and computers we use to communicate and the X-ray machines that help doctors diagnose diseases. In this Very Short Introduction, David Blockley explores the nature and practice of engineering--its history, its scope, and its relationship with art, craft, science, and technology. He begins with its early roots, ranging from Archimedes to some of the great figures of engineering such as Brunel and Marconi, right up to the modern day, describing the... View Details


Civil Engineering Reference Manual for the PE Exam, 15th Ed
by Michael R. Lindeburg PE (Author)

Only available at PPI2PASS.com, updated to the 2018 exam specs the new edition of PE Civil Reference Manual, Sixteenth Edition with free eTextbook.​

Upgrade your review with PPI’s Civil PE prep course and a passing guarantee. This prep course provides expert instruction, a structured syllabus, PPI's #1 selling review materials, and convenient online viewing from the comfort of home or on the go. Visit ppi2pass to learn more and enroll.

Get your CERM15 code updates and Civil Engineering Reference Manual index at ppi2pass.com/downloads.
View Details


Studying Engineering: A Road Map to a Rewarding Career (Fourth Edition)
by Raymond B. Landis (Author)

About the Book
Since Studying Engineering: A Road Map to a Rewarding Career exploded onto the market in 1995, it has become the best selling Introduction to Engineering textbook of all time. Adopted by over 300 U.S. institutions, and reaching more than 150,000 students, the book has made major inroads into the "sink or swim" paradigm of engineering education. Armed with the book as a powerful tool for "student development," large numbers of engineering programs have implemented Introduction to Engineering courses to improve the academic performance and retention rates of their... View Details


Practical Electronics for Inventors, Fourth Edition
by Paul Scherz (Author), Simon Monk (Author)

A Fully-Updated, No-Nonsense Guide to Electronics

Advance your electronics knowledge and gain the skills necessary to develop and construct your own functioning gadgets. Written by a pair of experienced engineers and dedicated hobbyists, Practical Electronics for Inventors, Fourth Edition, lays out the essentials and provides step-by-step instructions, schematics, and illustrations. Discover how to select the right components, design and build circuits, use microcontrollers and ICs, work with the latest software tools, and test and tweak your creations. This... View Details


The Beginner's Guide to Engineering: Mechanical Engineering
by Mark Huber (Author)

The Beginner’s Guide to Engineering series is designed to provide a very simple, non-technical introduction to the fields of engineering for people with no experience in the fields. Each book in the series focuses on introducing the reader to the various concepts in the fields of engineering conceptually rather than mathematically. These books are a great resource for high school students that are considering majoring in one of the engineering fields, or for anyone else that is curious about engineering but has no background in the field. Books in the series: 1. The Beginner’s Guide to... View Details


Unwritten Laws of Engineering: Revised and Updated Edition
by W. J. King (Author), James G. Skakoon (Author)

This fully revised and updated edition of the 1944 classic serves as a crucial compilation of 'house rules' or a professional code. This new edition keeps the style of the original and much of its content. Changes reflect shifted societal values, changed employment laws and evolved corporate structures. Packed with contemporary examples, this new volume is a must for those entering the engineering field or for those interested in improving their professional effectiveness. View Details

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Turning Kids Into Grown-Ups
Parenting is fraught with uncertainty, changing with each generation. This hour, TED speakers share ideas about raising kids and how — despite our best efforts — we're probably still doing it wrong. Guests include former Stanford dean Julie Lythcott-Haims, former firefighter Caroline Paul, author Peggy Orenstein, psychologist Dr. Aala El-Khani, and poet Sarah Kay.
Now Playing: Science for the People

#470 Information Spookyhighway
This week we take a closer look at a few of the downsides of the modern internet, and some of the security and privacy challenges that are becoming increasingly troublesome. Rachelle Saunders speaks with cyber security expert James Lyne about how modern hacking differs from the hacks of old, and how an internet without national boards makes it tricky to police online crime across jurisdictions. And Bethany Brookshire speaks with David Garcia, a computer scientist at the Complexity Science Hub and the Medical University of Vienna, about the recent Cambridge Analytica scandal, and how social media platforms put a wrench...