Nav: Home

We should start planning for large lithium-ion battery demand, say materials scientists

October 11, 2017

The key materials that make up lithium-ion batteries, including manganese, nickel, and graphite, likely have sufficient supply to meet the anticipated long-term growth in demand for electric vehicles and portable electronics if we start planning now, say researchers in a perspective published October 11 in the journal Joule. Their first-of-its-kind analysis of the lithium-ion battery supply chain identified short-term challenges for obtaining lithium and cobalt, which may be mitigated by market responses, and the potential development of new cathode materials to replace cobalt.

"The theme that we see with material availability is there's often concern about whether there is enough x to meet new demand in y," says first author Elsa Olivetti, a materials scientist at the Massachusetts Institute of Technology. "You end up with a lot of hype without thoughtful care about where the challenges are, so let's panic where it's appropriate."

Lithium-ion batteries are increasingly attractive for electric cars because they are lightweight, powerful, and rechargeable. Like all batteries, lithium-ion batteries consist of an anode (typically graphite), a cathode (typically oxides of lithium, cobalt, nickel, and/or manganese), and a liquid electrolyte to transport the charge (a solution of lithium and other ions).

Based on publicly available data, the researchers assessed the availability of each of these elements and found cobalt to be most vulnerable to potential supply chain issues. Lithium is less of a concern because, even though the demand will significantly increase in the near future, it can be mined from a variety of sources, including rock and sea brine, and is abundant in several countries including Australia, Chile, and Argentina. The majority of cobalt is mined from the Democratic Republic of Congo, which introduces geo-political and supply chain disruption potential. Cobalt is currently economical to recycle, however, and this could help increase its long-term availability.

"Today, less than 1% of the automotive sector has any level of electrification, and almost half of Li-ion batteries are already going towards the automotive field. So we see that there's going to be an enormous push on some of the essential resources," says co-author Gerbrand Ceder (@cedergroup), of the Department of Materials Science & Engineering at the University of California, Berkeley. "We wrote this paper so people don't think, 'oh if I run out of cobalt, I'll just switch to something else.' There are real resource issues on the horizon that the industry can start planning for and avoid."

The researchers predict that supply and demand for cobalt may become unbalanced by 2025, but they suggest two longer-term strategies to handle the demand for the metal--enhancing recycling and developing new technologies. Cobalt is so attractive for lithium-ion batteries because the element creates stable cathode materials. Non-cobalt-containing cathodes have not been able to rival the cobalt-based cathodes, but recent studies have demonstrated that other cathode compounds with other metals, such as manganese, molybdenum, titanium or chromium, could act as substitutes.

One limitation of the study is that it is static and does not take into account world events such as hurricanes or wars that would almost certainly impact battery supplies. Whether supply can meet demand also depends on how the markets will react to increases or decreases in resource availability.

"Making predictions is hard, but I do think that there's information within the paper that will educate all of us." Ceder says. Olivetti adds: "We want to make sure that everyone is thinking about these issues, and that we have the right solution for whatever time on the horizon we're planning for."
-end-
The other co-authors on the perspective article are Gabrielle Gaustad, an expert in battery recycling at Rochester Institute of Technology and PhD candidate, and Xinkai Fu of MIT's Department of Materials Science & Engineering.

The authors acknowledge funding from the National Science Foundation.

There will be a webinar related to the paper on October 25, featuring presentations from Sam Jaffe (Cairn Energy Research Advisors), Elsa Olivetti (MIT), and Wei Tong (Lawrence Berkeley National Laboratory). For updates, visit http://www.cell.com/webinars.

Joule, Olivetti et al.: "Lithium-ion Battery Supply Chain Considerations: Analysis of Potential Bottlenecks in Critical Metals" http://www.cell.com/joule/fulltext/S2542-4351(17)30044-2

Joule (@Joule_CP), published monthly by Cell Press, is a new home for outstanding and insightful research, analysis, and ideas addressing the need for more sustainable energy. A sister journal to Cell, Joule spans all scales of energy research, from fundamental laboratory research into energy conversion and storage up to impactful analysis at the global level. Visit: http://www.cell.com/joule. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Batteries Articles:

Better, safer batteries
For the first time, researchers who explore the physical and chemical properties of electrical energy storage have found a new way to improve lithium-ion batteries.
New catalyst provides boost to next-generation EV batteries
A recent study, affiliated with South Korea's Ulsan National Institute of Science and Technology (UNIST) has introduced a new composite catalyst that could efficiently enhance the charg-discharge performances when applied to metal-air batteries (MABs).
New lithium batteries from used cell phones
Research from the University of Cordoba (Spain) and San Luis University (Argentina) was able to reuse graphite from cell phones to manufacture environmentally friendly batteries.
Safe potassium-ion batteries
Australian scientists have developed a nonflammable electrolyte for potassium and potassium-ion batteries, for applications in next-generation energy-storage systems beyond lithium technology.
Will the future's super batteries be made of seawater?
The race is on to develop even more efficient and rechargable batteries for the future.
Less may be more in next-gen batteries
Rice University engineers build full lithium-ion batteries with silicon anodes and an alumina layer to protect cathodes from degrading.
Not so fast: Some batteries can be pushed too far
Fast charge and discharge of some lithium-ion batteries with intentional defects degrades their performance and endurance, according to Rice University engineers.
Interfacial chemistry improves rechargeability of Zn batteries
Prof. CUI Guanglei's group from the Qingdao Institute of Bioenergy and Bioprocess Technology of the Chinese Academy of Sciences has proposed new concepts concerning in situ formed and artificial SEIs as a means of fundamentally modulating the electrochemical characteristics of Zn.
Detours may make batteries better
Adding atom-scale defects to battery materials may help them charge faster, theoretical models by Rice University scientists show.
Dangerous wild grass will be used in batteries
Hogweed, which has grown over vast territories of Russia, can be useful as a material for batteries.
More Batteries News and Batteries Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.