Nav: Home

Tracking the viral parasites of giant viruses over time

October 11, 2017

In freshwater lakes, microbes regulate the flow of carbon and determine if the bodies of water serve as carbon sinks or carbon sources. Algae and cyanobacteria in particular can trap and use carbon, but their capacity to do so may be impacted by viruses. Viruses exist amidst all bacteria, usually in a 10-fold excess, and are made up of various sizes ranging from giant viruses, to much smaller viruses known as virophages (which live in giant viruses and use their machinery to replicate and spread.) Virophages can change the way a giant virus interacts with its host eukaryotic cell. For example, if algae are co-infected by a virophage and giant virus, the virophage limits the giant virus' ability to replicate efficiently. This reduces the impact a giant virus has on the diversion of nutrients, allowing the host algae to multiply, which could lead to more frequent algal blooms.

Using metagenome data sets collected over several years in northern freshwater lakes, a team led by researchers at The Ohio State University and the U.S. Department of Energy Joint Genome Institute (DOE JGI), a DOE Office of Science User Facility, uncovered 25 novel sequences of virophages. Reported October 11, 2017 in Nature Communications, the identification of these novel sequences effectively doubles the number of virophages known since their discovery a decade ago.

"Usually metagenome data sets are one-offs," said DOE JGI scientist and first author Simon Roux. "People had started to see virophages in metagenomes, but no one had a long time-series until now. Was it here once? Always? We never really knew this, but it's a critical piece of information to understand their importance."

The work stemmed from a Community Science Program (CSP) proposal involving northern freshwater lakes by KT (Trina) McMahon of the University of Wisconsin-Madison. Samples of microbial communities in Lake Mendota and Trout Bog Lake were regularly collected over several years as part of the NSF-funded North Temperate Lakes Long Term Ecological Research (NTL-LTER) project of the National Science Foundation. Sequencing and analyzing these metagenomes from the 3-year and the 5-year time-series is allowing researchers to identify the community members, determine their metabolic pathways, and follow changes in communities over several years.

Beyond looking at the microbial communities, McMahon and Rex Malmstrom, head of the DOE JGI Micro-Scale Applications group, asked collaborator Matt Sullivan at The Ohio State University if he'd be interested in using the same metagenomic data sets to look at the lakes' viral ecology. Roux started mining the data sets while still a postdoctoral fellow with the Sullivan lab. "I knew there were lots of viruses in the sequence data, but not that some the viruses were themselves hosts to other viruses," said Malmstrom. "With time series data we could do more than assemble genome and build phylogenetic trees, the data allowed us to examine genetic variation within populations and look for co-occurrence and abundance patterns between virophages and their giant virus hosts. With so many time points in the data set, you can find strong connections."

Trina McMahon, whose CSP datasets were the basis of this work, says having the viral ecology information helps form a more complete picture of the ecosystem. "We are thrilled to have one more piece of the puzzle. Viruses are clearly playing a major role in shaping community composition and therefore function, of the whole lake ecosystem. My own lab lacks the expertise to tackle viruses alone, hence the collaboration with Simon and Matt Sullivan is so important. Our long term goal is to learn enough about the forces controlling community assembly and dynamics, as well as the ecological traits of each lineage, in order to create more predictive models about how freshwater lakes will respond to climate and land-use change, at an ecosystem scale."

Aside from doubling the number of virophages in public databases, the time series allowed Roux and his colleagues to see the viruses' ecological profiles - if factors such as the seasons or abundance of particular microbes influenced their own presence. Through co-occurrence analysis, the researchers associated the virophages with sequences of known lineages of giant viruses, and proposed the existence of 3 new groups of candidate giant viruses infected by virophages. These co-occurrence analyses also allowed them to find putative associations between the giant virus sequences and specific eukaryotic hosts.

"These findings are correlation-based," noted Roux, "but it's a good example of a metagenomics use case. Metagenomes helped us not only discover new viral diversity and determine what it should do in the ecosystem, but it helps us design hypothesis and follow-up experiments about virus-host interactions so we're not just throwing out a wide net blindly."
-end-
The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. DOE JGI, headquartered in Walnut Creek, Calif., provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @doe_jgi on Twitter.

DOE's Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

DOE/Joint Genome Institute

Related Virus Articles:

Virus multiplication in 3D
Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies.
How the Zika virus can spread
The spread of infectious diseases such as Zika depends on many different factors.
Fighting the herpes virus
New insights into preventing herpes infections have been published in Nature Communications.
Strategies of a honey bee virus
Heidelberg, 23 October 2019 - The Israeli Acute Paralysis Virus is a pathogen that affects honey bees and has been linked to Colony Collapse Disorder, a key factor in decimating the bee population.
Tracking the HI virus
A European research team led by Prof. Christian Eggeling from the Friedrich Schiller University Jena, the Leibniz Institute of Photonic Technology (Leibniz IPHT), and the University of Oxford has now succeeded in using high-resolution imaging to make visible to the millisecond how the HI virus spreads between living cells and which molecules it requires for this purpose.
Prior Zika virus or dengue virus infection does not affect secondary infections in monkeys
Previous infection with either Zika virus or dengue virus has no apparent effect on the clinical course of subsequent infection with the other virus, according to a study published August 1 in the open-access journal PLOS Pathogens by David O'Connor of the University of Wisconsin-Madison, and colleagues.
Smartphone virus scanner is not what you think
The current leading method to assess the presence of viruses and other biological markers of disease is effective but large and expensive.
Early dengue virus infection could "defuse" zika virus
The Zika virus outbreak in Latin America has affected over 60 million people up to now.
Catch a virus by its tail
At a glance: Research uncovers key mechanism that allows some of the deadliest human RNA viruses to orchestrate the precise copying of the individual pieces of their viral genome and replicate.
Developing a vaccine against Nipah virus
Researchers developed a novel recombinant vaccine called NIPRAB that shows robust immunization against Nipah virus in animal models and may be effective against other viruses in the same family.
More Virus News and Virus Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Uncharted
There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 1: Numbers
In a recent Radiolab group huddle, with coronavirus unraveling around us, the team found themselves grappling with all the numbers connected to COVID-19. Our new found 6 foot bubbles of personal space. Three percent mortality rate (or 1, or 2, or 4). 7,000 cases (now, much much more). So in the wake of that meeting, we reflect on the onslaught of numbers - what they reveal, and what they hide.  Support Radiolab today at Radiolab.org/donate.