New software speeds origami structure designs

October 11, 2017

Researchers at Georgia Institute of Technology have developed a new computer-aided approach that streamlines the design process for origami-based structures, making it easier for engineers and scientists to conceptualize new ideas graphically while simultaneously generating the underlying mathematical data needed to build the structure in the real world.

Origami paper folding techniques in recent years have been at center of research efforts focused on finding practical engineering applications for the ancient art, with ideas ranging from deployable antennas to robotic arms.

"Our work provides a means to predict computationally the real origami behavior of a design - something that up to now has not been easily done," said Glaucio Paulino, a professor in the Georgia Tech School of Civil and Environmental Engineering. "With the new software, we can easily visualize and, most importantly, engineer the behavior of deployable, self-assembling, and adaptable origami systems."

The research, which was supported by the National Science Foundation and reported October 11th in the journal Proceedings of the Royal Society A, involved building a computer model to simulate the interaction between the two facets of a folded sheet, including how easily and how far the folds would bend and how much the flat planes would deform during movement.

Once all sections were connected together and digitally represented a piece of origami, the model could simulate how the structure would behave based on what type of material - from soft paper to hard plastic or metal - would be used to create the object.

"This type of modeling was possible already using finite element analysis, but that is a time-consuming process that could take hours or days and provides a lot of unnecessary data," said Ke Liu, a Georgia Tech graduate student who worked on the project. "Our new process is much faster and gives us the underlying data for how the origami works."

The software, which is called MERLIN, allows the researchers to simulate how origami structures will respond to compression forces from different angles - one at a time or several simultaneously. The researchers can then quickly adjust the parameters for the type of material used or from what angle it is compressed to see how that would change the behavior of the piece.

For one of their simulations, the researchers recreated a foldable wine bottle gift bag that uses a cylindrical shell origami called the Kresling pattern. When the top of the structure is compressed to a threshold point, sections of the bag collapse in on themselves in multiple stages.

"The software also allows us to see where the energy is stored in the structure and better understand and predict how the objects will bend, twist and snap," Paulino said.

Paulino and his team recently designed an origami structure capable of being reconfigured to fold into different shapes. The goal was to lay the groundwork for structures that could eventually reconfigure themselves, such as an antenna that could change its shape and operate at different frequencies.

"With this new design approach, we're able to get insight with every iteration of the design, which will guide our design choices and ultimately give us more power to fine-tune these structures," Paulino said.

The software will be provided free for other researchers to use and will be used as an educational tool for undergraduate students at Georgia Tech.
-end-
This research was partially supported by the National Science Foundation (NSF) under grant CMMI-1538830, the China Scholarship Council (CSC), and the Raymond Allen Jones Chair at the Georgia Institute of Technology. The content is solely the responsibility of the authors and does not necessarily represent the official views of those organizations.

CITATION: K. Liu, G. H. Paulino, "Nonlinear Mechanics of Non-Rigid Origami: An Efficient Computational Approach," (Proceedings of the Royal Society A, 2017). http://dx.doi.org/10.1098/rspa.2017.0348

Georgia Institute of Technology

Related Behavior Articles from Brightsurf:

Variety in the migratory behavior of blackcaps
The birds have variable migration strategies.

Fishing for a theory of emergent behavior
Researchers at the University of Tsukuba quantified the collective action of small schools of fish using information theory.

How synaptic changes translate to behavior changes
Learning changes behavior by altering many connections between brain cells in a variety of ways all at the same time, according to a study of sea slugs recently published in JNeurosci.

I won't have what he's having: The brain and socially motivated behavior
Monkeys devalue rewards when they anticipate that another monkey will get them instead.

Unlocking animal behavior through motion
Using physics to study different types of animal motion, such as burrowing worms or flying flocks, can reveal how animals behave in different settings.

AI to help monitor behavior
Algorithms based on artificial intelligence do better at supporting educational and clinical decision-making, according to a new study.

Increasing opportunities for sustainable behavior
To mitigate climate change and safeguard ecosystems, we need to make drastic changes in our consumption and transport behaviors.

Predicting a protein's behavior from its appearance
Researchers at EPFL have developed a new way to predict a protein's interactions with other proteins and biomolecules, and its biochemical activity, merely by observing its surface.

Spirituality affects the behavior of mortgagers
According to Olga Miroshnichenko, a Sc.D in Economics, and a Professor at the Department of Economics and Finance, Tyumen State University, morals affect the thinking of mortgage payers and help them avoid past due payments.

Asking if behavior can be changed on climate crisis
One of the more complex problems facing social psychologists today is whether any intervention can move people to change their behavior about climate change and protecting the environment for the sake of future generations.

Read More: Behavior News and Behavior Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.