Nav: Home

Analysis: Metal supplies unlikely to seriously hamper battery use

October 11, 2017

CAMBRIDGE, Mass. -- The dramatic rise in production of electric vehicles, coupled with expected growth in the use of grid-connected battery systems for storing electricity from renewable sources, raises a crucial question: Are there enough raw materials to enable significantly increased production of lithium-ion batteries, which are the dominant type of rechargeable batteries on the market?

A new analysis by researchers at MIT and elsewhere indicates that for the near future, there will be no absolute limitations on battery manufacturing due to shortages of the critical metals they require. But, without proper planning, there could be short-term bottlenecks in the supplies of some metals, particularly lithium and cobalt, that could cause temporary slowdowns in production.

The analysis, by professor Elsa Olivetti and doctoral student Xinkai Fu in MIT's Department of Materials Science and Engineering, Gerbrand Ceder at the University of California at Berkeley, and Gabrielle Gaustad at the Rochester Institute of Technology, appears today in the journal Joule.

Olivetti, who is the Atlantic Richfield Assistant Professor of Energy Studies, says the new journal's editors asked her to look at possible resource limitations as battery production escalates globally. To do that, Olivetti and her co-authors concentrated on five of the most essential ingredients needed to produce today's lithium-ion batteries: lithium, cobalt, manganese, nickel, and carbon in the form of graphite. Other key ingredients, such as copper, aluminum, and some polymers used as membranes, are considered abundant enough that they are not likely to be a limiting factor.

Among those five materials, it was quickly clear that nickel and manganese are used much more widely in other industries; battery production, even if significantly increased, is "not a significant part of the pie," Olivetti says, so nickel and manganese supplies are not likely to be impacted. Ultimately, the most significant materials whose supply chains could become limited are lithium and cobalt, she says.

For those two elements, the team looked at the diversity of the supply options in terms of geographical distribution, production facilities, and other variables. For lithium, there are two main pathways to production: mining and processing of brines. Of those, production from brine can be ramped up to meet demand much more rapidly, within as little as six or eight months, compared to bringing a new underground mine into production, Olivetti says. Although there might still be disruptions in the supply of lithium, she says, these are unlikely to seriously disrupt battery production.

Cobalt is a bit more complex. Its major source is the Democratic Republic of the Congo, which has a history of violent conflict and corruption. "That's been a challenge," Olivetti says. Cobalt is typically produced as a byproduct of other mining activity. "Often a mine's revenue comes from nickel, and cobalt is a secondary product," she says.

But the main potential cause of delays in obtaining new supplies of the mineral comes from not its inherent geographic distribution, but the actual extraction infrastructure. "The delay is in the ability to open new mines," she says. "With any of these things, the material is out there, but the question is at what price." To guard against possible disruptions in the cobalt supply, she says, researchers "are trying to move to cathode materials [for lithium-ion batteries] that are less cobalt-dependent."

The study looked out over the next 15 years, and within that time frame, Olivetti says, there are potentially some bottlenecks in the supply chain, but no serious obstacles to meeting the rising demand. Still, she says, "it's important for stakeholders to be aware of the bottlenecks," as unanticipated supply disruptions could put some companies out of business. Companies need to think about alternative sources, and "know where and when to panic."

And understanding which materials are most subject to disruption could help guide research directions, in deciding "where do we put our development efforts. It does make sense to think of cathodes that use less cobalt," Olivetti says.

Overall, she says, "in most cases there are reasonable supplies" of the critical materials, "but there are potential challenges that should be approached with eyes wide open. What we tried to present is a framework by which to think about these challenges in a bit more quantitative way than you usually see."
The work was supported by the National Science Foundation.

Massachusetts Institute of Technology

Related Lithium Articles:

New lithium batteries from used cell phones
Research from the University of Cordoba (Spain) and San Luis University (Argentina) was able to reuse graphite from cell phones to manufacture environmentally friendly batteries.
Using neutrons and X-rays to analyze the aging of lithium batteries
An international team has used neutron and X-ray tomography to investigate the dynamic processes that lead to capacity degradation at the electrodes in lithium batteries.
Can lithium halt progression of Alzheimer's disease?
In a new study, a team of researchers at McGill University has shown that, when given in a formulation that facilitates passage to the brain, lithium in doses up to 400 times lower than what is currently being prescribed for mood disorders is capable of both halting signs of advanced Alzheimer's pathology and of recovering lost cognitive abilities.
MTU engineers examine lithium battery defects
Lithium dendrites cause poor performance and even explosions in batteries with flammable liquid electrolytes.
New technology for pre-replenishing lithium for lithium ion supercapacitors
Li3N containing electrode is prepared by a commercially adoptable route, using DMF to homogenate the electrode slurry.
Towards new lithium-ion batteries that are safer and more efficient
Researchers have studied 2 types of cathodes that are very similar in their composition, but which show completely different behavior: one of them suffers from the known loss of energy density in the first charge cycle, while the other does not.
Post-lithium technology
Next-generation batteries will probably see the replacement of lithium ions by more abundant and environmentally benign alkali metal or multivalent ions.
An air-stable and waterproof lithium metal anode
The instability of lithium metal anode in air and the dendrite growth limit its applications.
Expanding the temperature range of lithium-ion batteries
Electric cars struggle with extreme temperatures, mainly because of impacts on the electrolyte solutions in their lithium-ion batteries.
Toward a low-cost industrialization of lithium-ion capacitors
Combining two additives instead of one to facilitate the incorporation of lithium within capacitors: that is the solution proposed by researchers from l'Institut des matériaux Jean Rouxel (CNRS/Université de Nantes), in collaboration with Münster Electrochemical Energy Technology, in order to promote the low-cost, simple, and efficient development of the lithium-ion capacitors used to store electrical energy.
More Lithium News and Lithium Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 1: Numbers
In a recent Radiolab group huddle, with coronavirus unraveling around us, the team found themselves grappling with all the numbers connected to COVID-19. Our new found 6 foot bubbles of personal space. Three percent mortality rate (or 1, or 2, or 4). 7,000 cases (now, much much more). So in the wake of that meeting, we reflect on the onslaught of numbers - what they reveal, and what they hide.  Support Radiolab today at