Nav: Home

New type of stem cell line produced offers expanded potential for research and treatments

October 11, 2017

Researchers at the Wellcome Trust Sanger Institute and their collaborators have created Expanded Potential Stem Cells (EPSCs) in mice, for the first time, that have a greater potential for development than current stem cell lines. These stem cells have the features of the very first cells in the developing embryo, and can develop into any type of cell.

Published today in Nature (11th October) the methods used could also help produce similar stem cell lines from human and other mammalian species, including those such as pigs or cows where embryonic stem cell lines are still not available.

The researchers also believe that their study could have implications for human regenerative medicine and for understanding miscarriage and developmental disorders.

Stem cells have the ability to develop into other cell types, and existing stem cell lines are already extremely useful for research into development, disease and treatments. However, the two currently available types of stem cell lines - Embryonic Stem cells (ES) and induced Pluripotent Stem cells (iPS) - have certain limitations. It is not currently possible for them to form every type of cell since they are already excluded from developing certain cell lineages.

To discover new stem cells for use in research and regenerative medicine, the researchers created a way of culturing cells from the earliest stage of development, when the fertilised egg has only divided into 4 or 8 cells that are still considered to retain some totipotency - the ability to produce all cell types. Their hypothesis was that these cells should be less programmed than ES cells, which are taken from the around-100-cell stage of development - called a blastocyst. They grew these early cells in a special growth condition that inhibited key development signals and pathways.

The scientists discovered that their new cultured cells kept the desired development characteristics of the earliest cells and named them Expanded Potential Stem Cells (EPSCs). Importantly, they were also able to reprogramme mouse ES cells and iPS cells in the new condition and create EPSCs from these cells, turning back the development clock to the very earliest cell type.

Dr Pentao Liu, lead researcher of this project, from the Wellcome Trust Sanger Institute and an affiliate faculty member of the Wellcome Trust-MRC Stem Cell Institute, University of Cambridge, said: "The earliest cell is like a blank piece of paper, in theory it should have the greatest development potential. This is the first time that stable stem cell lines of these earliest mouse cells have been possible, and we see that they do indeed keep the molecular features of the 4-8 cell embryo and can develop into any cell type."

As a fertilised egg develops into a blastocyst, it produces cells that will form the embryo - where ES cells come from - and two other types of cell that will develop into the placenta or the yolk sac. It is possible to establish three different types of stem cells - including ES cells - from these three cell types in the blastocyst. EPSCs are the first stem cells that are able to produce all three types of blastocyst stem cells, which gives them much greater potential for development.

Dr Jian Yang, a first author on the paper from the Wellcome Trust Sanger Institute, said: "EPSCs provide a platform to study early embryo cells in detail at the molecular level to understand development, not only in mouse, but ultimately in future in humans. This new method of producing stem cells could be enormously helpful for studying development, more efficiently generating functional human cells, and researching treatments for pregnancy problems such as pre-eclampsia and miscarriages."

Professor Hiro Nakauchi, a co-author on the paper from Stanford University, said: "This is a fantastic achievement, by working with the very earliest cells, this study has created stem cell lines that can form both embryonic and all the extra-embryonic cells. The methods and insights from this study in mice could be used to help establish cultures of similar stem cells from other mammalian species, including those where no ES or iPS cell lines are available yet. The research also has great implications for human regenerative medicine as stem cells with improved development potential open up new opportunities. Further research in this area is vital, so that we can properly explore the potential of these cells."
-end-
Notes to editors:

Publication: Jian Yang et al. (2017) Establishment of Murine Expanded Potential Stem Cells. Nature. DOI: 10.1038/nature24052

What is a stem cell?
A stem cell is a cell with the unique ability to develop into specialised cell types in the body. http://www.yourgenome.org/facts/what-is-a-stem-cell

Selected websites:

Wellcome Trust Sanger Institute

The Wellcome Trust Sanger Institute is one of the world's leading genome centres. Through its ability to conduct research at scale, it is able to engage in bold and long-term exploratory projects that are designed to influence and empower medical science globally. Institute research findings, generated through its own research programmes and through its leading role in international consortia, are being used to develop new diagnostics and treatments for human disease. http://www.sanger.ac.uk

Wellcome

Wellcome exists to improve health for everyone by helping great ideas to thrive. We're a global charitable foundation, both politically and financially independent. We support scientists and researchers, take on big problems, fuel imaginations and spark debate. http://www.wellcome.ac.uk

Wellcome Trust Sanger Institute

Related Stem Cells Articles:

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.
First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.
New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.
NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.
Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.
In mice, stem cells seem to work in fighting obesity! What about stem cells in humans?
This release aims to summarize the available literature in regard to the effect of Mesenchymal Stem Cells transplantation on obesity and related comorbidities from the animal model.
TSRI researchers identify gene responsible for mesenchymal stem cells' stem-ness'
Researchers at The Scripps Research Institute recently published a study in the journal Cell Death and Differentiation identifying factors crucial to mesenchymal stem cell differentiation, providing insight into how these cells should be studied for clinical purposes.
More Stem Cells News and Stem Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.