Nav: Home

Ceramic pump moves molten metal at a record 1,400 degrees Celsius

October 11, 2017

A ceramic-based mechanical pump able to operate at record temperatures of more than 1,400 degrees Celsius (1,673 Kelvin) can transfer high temperature liquids such as molten tin, enabling a new generation of energy conversion and storage systems.

The new pump could facilitate high efficiency, low-cost thermal storage, providing a new way to store renewable energy generated by wind and solar power, and facilitate an improved process for generating hydrogen directly from fuels such as methane - without producing carbon dioxide. Use of ceramic components, normally considered too brittle for mechanical systems, was made possible by precision machining - and seals made from another high-temperature material: graphite.

The research was supported by the Advanced Research Projects Agency - Energy (ARPA-E) and reported in the October 12 issue of the journal Nature. The pump was developed by researchers from the Georgia Institute of Technology with collaborators from Purdue University and Stanford University.

"Until now, we've had a ceiling for the highest temperatures at which we could move heat and store it, so this demonstration really enables energy advances, especially in renewables," said Asegun Henry, an assistant professor in Georgia Tech's Woodruff School of Mechanical Engineering. "The hotter we can operate, the more efficiently we can store and utilize thermal energy. This work will provide a step change in the infrastructure because now we can use some of the highest temperature materials to transfer heat. These materials are also the hardest materials on Earth."

Thermal energy, fundamental to power generation and many industrial processes, is most valuable at high temperatures because entropy - which makes thermal energy unavailable for conversion - declines at higher temperatures. Liquid metals such as molten tin and molten silicon could be useful in thermal storage and transfer, but until now, engineers didn't have pumps and pipes that could withstand such extreme temperatures.

"The hotter you can operate, the more you can convert thermal energy to mechanical energy or electrical energy," Henry explained. "But when containment materials like metals get hot, they become soft and that limits the whole infrastructure."

Ceramic materials can withstand the heat, but they are brittle - and many researchers felt they couldn't be used in mechanical applications like pumps. But Henry and graduate student Caleb Amy - the paper's first author - decided to challenge that assumption by trying to make a ceramic pump. "We weren't certain that it wouldn't work, and for the first four times, it didn't," Henry said.

The researchers used an external gear pump, which uses rotating gear teeth to suck in the liquid tin and push it out of an outlet. That technology differs from centrifugal and other pump technologies, but Henry chose it for its simplicity and ability to operate at relatively low speeds. The gears were custom-manufactured by a commercial supplier and modified in Henry's lab in the Carbon Neutral Energy Solutions (CNES) building at Georgia Tech.

"What is new in the past few decades is our ability to fabricate different ceramic materials into large chunks of material that can be machined," Henry explained. "The material is still brittle and you have to be careful with the engineering, but we've now shown that it can work."

Addressing another challenge, the researchers used another high-temperature material - graphite - to form the seals in the pump, piping and joints. Seals are normally made from flexible polymers, but they cannot withstand high temperatures. Henry and Amy used the special properties of graphite - flexibility and strength - to make the seals. The pump operates in a nitrogen environment to prevent oxidation at the extreme temperatures.

The pump operated for 72 hours continuously at a few hundred revolutions per minute at an average temperature of 1,473 Kelvin - with brief operation up to 1,773 Kelvin in other experimental runs. Because the researchers used a relatively soft ceramic known as Shapal for ease of machining, the pump sustained wear. But Henry says other ceramics with greater hardness will overcome that issue, and the team is already working on a new pump made with silicon carbide.

Among the most interesting applications for the high-temperature pump would be low-cost grid storage for surplus energy produced by renewables - one of the greatest challenges to the penetration of renewables on the grid. Electricity produced by solar or wind sources could be used to heat molten silicon, creating thermal storage that could be used when needed to produce electricity.

"It appears likely that storing energy in the form of heat could be cheaper than any other form of energy storage that exists," Henry said. "This would allow us to create a new type of battery. You would put electricity in when you have an excess, and get electricity back out when you need it."

The Georgia Tech researchers are also looking at their molten metal pump as part of a system to produce hydrogen from methane without generating carbon dioxide. Because liquid tin doesn't react with hydrocarbons, bubbling methane into liquid tin would crack the molecule to produce hydrogen and solid carbon - without generating carbon dioxide, a greenhouse gas.

The pump could also be used to allow higher temperature operation in concentrated solar power applications, where molten salts are now used. The combination of liquid tin and ceramics would have an advantage in being able to operate at higher temperatures without corrosion, enabling higher efficiency and lower cost.

The ceramic pump uses gears just 36 millimeters in diameter, but Henry says scaling it up for industrial processing wouldn't require dramatically larger components. For example, by increasing the pump dimensions by only four or five times and operating the pump near its maximum rated speed, the total heat that could be transferred would increase by a factor of a thousand, from 10 kW to 100 MW, which would be consistent with utility-scale power plants.

For storage, molten silicon - with still higher temperatures - may be more useful because of its lower cost. The pump could operate at much higher temperatures than those demonstrated so far, even past 2,000 degrees Celsius, Henry said.
-end-
This research was supported by the Advanced Research Projects Agency - Energy (ARPA-E) under award DE-AR0000339. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the funding agency.

CITATION: Caleb Amy, et al., "Pumping Liquid Metal at High Temperatures Up To 1,673 K," Nature, 2017.

Georgia Institute of Technology

Related Solar Power Articles:

Solar power from 'the dark side' unlocked by a new formula
Most of today's solar panels capture sunlight and convert it to electricity only from the side facing the sky.
Researchers develop a better way to harness the power of solar panels
Researchers at the University of Waterloo have developed a way to better harness the volume of energy collected by solar panels.
Solar power with a free side of drinking water
An integrated system seamlessly harnesses sunlight to cogenerate electricity and fresh water.
Breakthrough in new material to harness solar power could transform energy
The UToledo physicist pushing the performance of solar cells to levels never before reached made a significant breakthrough in the chemical formula and process to make the new material.
Fighting smog supports solar power
Model calculations by ETH researchers show that if China fought smog more aggressively, it could massively increase solar power production.
Aluminum nitride to extend life of solar power plants
NUST MISIS scientists together with their colleagues from the Central Metallurgical R&D Institute (Cairo, Egypt) have developed a composite material which will extend the life of solar towers -- installations for collecting Solar thermal energy -- from 2-3 to 5 years.
Explaining the plummeting cost of solar power
The dramatic drop in the cost of solar photovoltaic (PV) modules, which has fallen by 99 percent over the last four decades, is often touted as a major success story for renewable energy technology.
Solar power -- largest study to date discovers 25 percent power loss across UK
Regional 'hot spots' account for the power slump and these are more prevalent in the North of England than in the south
Air pollution can put a dent in solar power
Air pollution, especially in urban areas, can significantly reduce the power output from solar panels, and needs to be considered when design solar installations in or near cities.
Longer contracts leverage the free fuel in solar power at little O&M cost
Solar contracts are usually only for 20 years. But ACWA Power's contract with DEWA in Dubai will run until 2055 -- the world's first 35 year solar contract.
More Solar Power News and Solar Power Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.