Nav: Home

'Air-breathing' battery could cut costs of renewable energy storage

October 11, 2017

Wind and solar power are increasingly popular sources for renewable energy. But intermittency issues keep them from connecting widely to the U.S. grid: They require energy-storage systems that, at the cheapest, run about $100 per kilowatt hour and function only in certain locations.

Now MIT researchers have developed an "air-breathing" battery that could store electricity for very long durations for about one-fifth the cost of current technologies, with minimal location restraints and zero emissions. The battery could be used to make sporadic renewable power a more reliable source of electricity for the grid.

For its anode, the rechargeable flow battery uses cheap, abundant sulfur dissolved in water. An aerated liquid salt solution in the cathode continuously takes in and releases oxygen that balances charge as ions shuttle between the electrodes. Oxygen flowing into the cathode causes the anode to discharge electrons to an external circuit. Oxygen flowing out sends electrons back to the anode, recharging the battery.

"This battery literally inhales and exhales air, but it doesn't exhale carbon dioxide, like humans -- it exhales oxygen," says Yet-Ming Chiang, the Kyocera Professor of Materials Science and Engineering at MIT and co-author of a paper describing the battery. The research appears today in the journal Joule.

The battery's total chemical cost -- the combined price of the cathode, anode, and electrolyte materials -- is about 1/30th the cost of competing batteries, such as lithium-ion batteries. Scaled-up systems could be used to store electricity from wind or solar power, for multiple days to entire seasons, for about $20 to $30 per kilowatt hour.

Co-authors with Chiang on the paper are: first author Zheng Li, who was a postdoc at MIT during the research and is now a professor at Virginia Tech; Fikile R. Brushett, the Raymond A. and Helen E. St. Laurent Career Development Professor of Chemical Engineering; research scientist Liang Su; graduate students Menghsuan Pan and Kai Xiang; and undergraduate students Andres Badel, Joseph M. Valle, and Stephanie L. Eiler.

Finding the right balance

Development of the battery began in 2012, when Chiang joined the Department of Energy's Joint Center for Energy Storage Research, a five-year project that brought together about 180 researchers to collaborate on energy-saving technologies. Chiang, for his part, focused on developing an efficient battery that could reduce the cost of grid-scale energy storage.

A major issue with batteries over the past several decades, Chiang says, has been a focus on synthesizing materials that offer greater energy density but are very expensive. The most widely used materials in lithium-ion batteries for cellphones, for instance, have a cost of about $100 for each kilowatt hour of energy stored.

"This meant maybe we weren't focusing on the right thing, with an ever-increasing chemical cost in pursuit of high energy-density," Chiang says. He brought the issue to other MIT researchers. "We said, 'If we want energy storage at the terawatt scale, we have to use truly abundant materials.'"

The researchers first decided the anode needed to be sulfur, a widely available byproduct of natural gas and petroleum refining that's very energy dense, having the lowest cost per stored charge next to water and air. The challenge then was finding an inexpensive liquid cathode material that remained stable while producing a meaningful charge. That seemed improbable -- until a serendipitous discovery in the lab.

On a short list of candidates was a compound called potassium permanganate. If used as a cathode material, that compound is "reduced" -- a reaction that draws ions from the anode to the cathode, discharging electricity. However, the reduction of the permanganate is normally impossible to reverse, meaning the battery wouldn't be rechargeable.

Still, Li tried. As expected, the reversal failed. However, the battery was, in fact, recharging, due to an unexpected oxygen reaction in the cathode, which was running entirely on air. "I said, 'Wait, you figured out a rechargeable chemistry using sulfur that does not require a cathode compound?' That was the ah-ha moment," Chiang says.

Using that concept, the team of researchers created a type of flow battery, where electrolytes are continuously pumped through electrodes and travel through a reaction cell to create charge or discharge. The battery consists of a liquid anode (anolyte) of polysulfide that contains lithium or sodium ions, and a liquid cathode (catholyte) that consists of an oxygenated dissolved salt, separated by a membrane.

Upon discharging, the anolyte releases electrons into an external circuit and the lithium or sodium ions travel to the cathode. At the same time, to maintain electroneutrality, the catholyte draws in oxygen, creating negatively charged hydroxide ions. When charging, the process is simply reversed. Oxygen is expelled from the catholyte, increasing hydrogen ions, which donate electrons back to the anolyte through the external circuit.

"What this does is create a charge balance by taking oxygen in and out of the system," Chiang says.

Because the battery uses ultra-low-cost materials, its chemical cost is one of the lowest -- if not the lowest -- of any rechargeable battery to enable cost-effective long-duration discharge. Its energy density is slightly lower than today's lithium-ion batteries.

Making renewables more reliable

The prototype is currently about the size of a coffee cup. But flow batteries are highly scalable, Chiang says, and cells can be combined into larger systems.

As the battery can discharge over months, the best use may be for storing electricity from notoriously unpredictable wind and solar power sources. "The intermittency for solar is daily, but for wind it's longer-scale intermittency and not so predictable. When it's not so predictable you need more reserve -- the capability to discharge a battery over a longer period of time -- because you don't know when the wind is going to come back next," Chiang says. Seasonal storage is important too, he adds, especially with increasing distance north of the equator, where the amount of sunlight varies more widely from summer to winter.

Chiang says this could be the first technology to compete, in cost and energy density, with pumped hydroelectric storage systems, which provide most of the energy storage for renewables around the world but are very restricted by location.

"The energy density of a flow battery like this is more than 500 times higher than pumped hydroelectric storage. It's also so much more compact, so that you can imagine putting it anywhere you have renewable generation," Chiang says.
-end-
The research was supported by the Department of Energy.

Additional background

ARCHIVE: Study suggests route to improving rechargeable lithium batteries http://news.mit.edu/2017/solid-electrolyte-improving-rechargeable-lithium-batteries-0713

ARCHIVE: Toward all-solid lithium batteries http://news.mit.edu/2017/toward-solid-lithium-batteries-0202

ARCHIVE: New concept turns battery technology upside-down http://news.mit.edu/2016/new-concept-turns-battery-technology-upside-down-0525

ARCHIVE: Seeing how a lithium-ion battery works http://news.mit.edu/2014/seeing-how-lithium-ion-battery-works-0609

ARCHIVE: New battery design could give electric vehicles a jolt http://news.mit.edu/2011/flow-batteries-0606

Massachusetts Institute of Technology

Related Renewable Energy Articles:

Could water solve the renewable energy storage challenge?
Seasonally pumped hydropower storage could provide an affordable way to store renewable energy over the long-term, filling a much needed gap to support the transition to renewable energy, according to a new study from IIASA scientists.
Switching to renewable energy could save thousands of lives in Africa
New research from Harvard University and the University of Leicester finds that if Africa chooses a future powered by fossil fuels, nearly 50,000 people could die prematurely each year from fossil fuel emissions by 2030, mostly in South Africa, Nigeria and Malawi.
Scientists take strides towards entirely renewable energy
Researchers have made a major discovery that will make it immeasurably easier for people (or super-computers) to search for an elusive 'green bullet' catalyst that could ultimately provide entirely renewable energy.
Where to install renewable energy in US to achieve greatest benefits
A new Harvard study shows that to achieve the biggest improvements in public health and the greatest benefits from renewable energy, wind turbines should be installed in the Upper Midwest and solar power should be installed in the Great Lakes and Mid-Atlantic regions.
Croissant making inspires renewable energy solution
The art of croissant making has inspired researchers from Queen Mary University of London to find a solution to a sustainable energy problem.
Are we underestimating the benefits of investing in renewable energy?
Scientists have estimated the emissions intensity of carbon dioxide and other air pollutants from a major electricity distributor and highlighted key consequences - essential information for policymakers shaping decisions to reduce electricity system emissions.
Lighting the path to renewable energy
Professor Mahesh Bandi of Okinawa Institute of Science and Technology Graduate University (OIST) has co-developed a novel, standardized way of quantifying and comparing these variations in solar power.
How much energy storage costs must fall to reach renewable energy's full potential
The cost of energy storage will be critical in determining how much renewable energy can contribute to the decarbonization of electricity.
Renewable and nonrenewable energy in Myanmar's economic growth
An international group of scientists including a researcher from Ural Federal University developed a mathematical model that describes the influence of regenerative and non-regenerative energy sources on the economic growth of Myanmar.
Shifts to renewable energy can drive up energy poverty, PSU study finds
Efforts to shift away from fossil fuels and replace oil and coal with renewable energy sources can help reduce carbon emissions but do so at the expense of increased inequality, according to a new Portland State University study
More Renewable Energy News and Renewable Energy Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Uncharted
There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 1: Numbers
In a recent Radiolab group huddle, with coronavirus unraveling around us, the team found themselves grappling with all the numbers connected to COVID-19. Our new found 6 foot bubbles of personal space. Three percent mortality rate (or 1, or 2, or 4). 7,000 cases (now, much much more). So in the wake of that meeting, we reflect on the onslaught of numbers - what they reveal, and what they hide.  Support Radiolab today at Radiolab.org/donate.