Nav: Home

Engineers identify key to albatross' marathon flight

October 11, 2017

The albatross is one of the most efficient travelers in the animal world. One species, the wandering albatross, can fly nearly 500 miles in a single day, with just an occasional flap of its wings. The birds use their formidable wingspans, measuring up to 11 feet across, to catch and ride the wind.

Observers have noted for centuries that these feathered giants keep themselves aloft for hours, just above the ocean surface, by soaring and diving between contrasting currents of air, as if riding a sidewinding rollercoaster -- a flight pattern known as dynamic soaring.

Now engineers at MIT have developed a new model to simulate dynamic soaring, and have used it to identify the optimal flight pattern that an albatross should take in order to harvest the most wind and energy. They found that as an albatross banks or turns to dive down and soar up, it should do so in shallow arcs, keeping almost to a straight, forward trajectory.

The new model, they say, will be useful in gauging how albatross flight patterns may change as wind patterns shift with changing climate. It also may inform the design of wind-propelled drones and gliders which, if programmed with energy-efficient trajectories for given wind conditions, could be used to perform long-duration, long-range monitoring missions in remote regions of the world.

"The wandering albatross lives in the Southern Ocean, which is not very well-known. It's very hard to get there, and there is a lot of wind and waves," says Gabriel Bousquet, a graduate student in MIT's Department of Mechanical Engineering. "The region is extremely important for understanding the dynamics of climate change. With robots that can use the wind, you could monitor in real-time and get much denser data than we can now. This is an important step forward to actually write algorithms for robots to be able to use the wind."

Bousquet is the first author of a paper reporting the team's results, published in the journal Interface. His co-authors are Jean-Jacques Slotine, professor of mechanical engineering and information sciences and of brain and cognitive sciences, and Michael Triantafyllou, the Henry L. and Grace Doherty Professor in Ocean Science and Engineering, and professor of mechanical and ocean engineering.

Competitive soaring

The team's project was inspired, in part, by contests of dynamic soaring, in which competitors launch gliders from atop mountains and track the speed of each glider as it dives down, soars up, then doubles back and dives down again in a loop, propelled by the winds.

"These planes, without any engines, can go over 500 miles per hour, in a loop," Triantafyllou says. "It sounds strange -- how can you keep pumping energy out of what looks like nothing?"

It turns out the gliders are given a boost by varying wind currents. When a glider is launched from atop a mountain, high winds can act as a thruster, speeding the glider along until it reaches a sheltered layer of slower winds, whereupon it may reorient its flight direction before climbing back upward to the region of high winds.

The same wind-propelled phenomenon plays out in the flight of the albatross, Bousquet says, the only major difference being that, rather than lofting down behind a mountain, an albatross soars over water.

"The question we looked at was, since the wind is fast high above the water, and slow near the surface, how can we take advantage of these inhomogeneities and exploit wind energy in order to fly in an efficient way?" Bousquet says.

Riding the wind

Renowned English physicist Lord Rayleigh was the first to describe dynamic soaring in mathematical modeling terms, predicting that albatrosses should fly in a series of arcing, 180-degree half-circles as they alternately soar through layers of high wind and swoop down to layers of low wind. This has been the general understanding, even today.

However, Bousquet and his colleagues came to a quite different conclusion. The team first modeled the wind field, drawing up a relatively simple equation to represent the change in wind speed with altitude. They specifically noted the thickness of the shear layer, which can be thought of as the distance between a layer of slow winds and a layer of fast winds.

They then used a three-dimensional model to represent the flight of an albatross or glider. This model consists of complicated equations of motion that are extremely difficult to solve, as they account for interactions within and between multiple layers of the atmosphere. The researchers solved those complicated equations using a method called numerical optimization. They varied the thickness of the shear layer and looked for the minimum wind needed to sustain flight. They found that the thinner the shear layer, the less wind was needed to keep a bird aloft. In other words, the closer the layers of slow and fast winds, the less energy an albatross must expend to stay in the air.

As an albatross only flies within the first 5 to 20 meters above the water, the researchers managed to simplify the model. They rewrote the equations, essentially compressing them into a two-dimensional model, in a way that still accurately simulates the flight of an albatross or glider.

They also found, both in the numerical and two-dimensional models, that as the shear layer thins, a bird can fly more efficiently if it dives and soars between wind layers in shallow arcs rather than wide half-circles. Bousquet says this may at first seem counterintuitive.

"One way to look at it is that, at each crossing between the slow and fast layers, some airspeed is gained," Bousquet explains. "The most airspeed in a single crossing is gained if crossing directly up- or downwind -- that's what happens with half-turns. However, there is also an airspeed loss due to drag while turning. So it turns out that the important metric is the ratio between gains and losses. So it is more efficient to gain a little, often, as is the case with small turns, rather than a lot, but rarely, such as with half turns."

The team computed that the most energy-efficient flight trajectory would be to fly in extremely shallow arcs, approaching zero degrees in amplitude. To see whether these results held up in the real world, they compared their predictions with actual GPS recordings taken of albatrosses in flight. These recordings revealed that the birds tended to turn by an average angle of 60 degrees, far shallower an arc than the 180-degree half-circle that most scientists have assumed the animals follow.

Slotine says the paper's insights can serve as a map for building wind-powered drones and gliders -- a goal that the team is actively working toward.

"If we want to design robots that use the wind, now we know that moving forward along shallow arcs favors both travel speed and efficient energy extraction," Slotine says. "And it turns out the albatrosses are doing it that way."
This research was funded, in part, by a Fulbright Science and Technology fellowship, a Professor Amar G. Bose research grant, a Link Foundation Ocean Engineering and Instrumentation fellowship, and by the Singapore-MIT Alliance for Research and Technology.

Additional background

PAPER: Optimal dynamic soaring consists of successive shallow arcs

ARCHIVE: How cormorants emerge dry after deep dives

ARCHIVE: Artificial whisker reveals source of harbor seal's uncanny prey-sensing ability

ARCHIVE: Going with the flow

ARCHIVE: Speed limit for birds

Massachusetts Institute of Technology

Related Engineering Articles:

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.
Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.
Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.
New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.
Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.
Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.
Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.
What can snakes teach us about engineering friction?
If you want to know how to make a sneaker with better traction, just ask a snake.
Engineering a plastic-eating enzyme
Scientists have engineered an enzyme which can digest some of our most commonly polluting plastics, providing a potential solution to one of the world's biggest environmental problems.
A new way to do metabolic engineering
University of Illinois researchers have created a novel metabolic engineering method that combines transcriptional activation, transcriptional interference, and gene deletion, and executes them simultaneously, making the process faster and easier.
More Engineering News and Engineering Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at