Nav: Home

New study finds thalamus wakes the brain during development

October 11, 2018

WASHINGTON (Oct. 11, 2018) -- Consciousness requires continuous, internally generated activity in the brain. The modulation of this activity is the basis of the electroencephalogram (EEG) and of generation of sleep, dreams, and perception. Achieving such activity is thus an important milestone in normal brain maturation, which occurs around birth. Successful transition to this activity indicates a good prognosis for babies born prematurely and/or suffering from damage to the brain.

To be functional as a dreaming, seeing, and thinking entity the brain need to achieve two milestones: continuity, which means that the brain is always active and state dependence, meaning brain activity is modulated by sleep, waking, and attention. The circuit mechanisms behind the development of continuity and state dependence in the brain have remained unknown, but have been widely assumed to be located in the cerebral cortex, the convoluted brain structure responsible for thought and perception.

A team from the George Washington University (GW) has published a study in the Journal of Neuroscience suggesting instead that the thalamus, a tiny nucleus deep in the brain, actually controls the development of state dependence and continuity.

"Our results indicate that cellular changes in the thalamus relay function may be critical drivers for the maturation of background activity," Matthew Colonnese, PhD, associate professor of pharmacology and physiology at the GW School of Medicine and Health Sciences, said. "Humans undergo developmental transitions in brain activity before and near birth."

Drawing on previous work by Colonnese, his team used advanced techniques to record simultaneously from multiple brain regions to pinpoint the circuit change responsible for the acquisition of continuity and state dependence measured in the sensory cortex. They were surprised to learn that activity changes in the thalamus, rather than the local cortical circuitry or the interconnectivity of two structures, can explain most of these critical developmental milestones.

"From a clinical perspective, certain things can go wrong in birth, like hypoxic-ischemic encephalopathy, brain injury caused by lack of oxygen to the brain, and the brain can revert to a state of discontinuity or never develop continuity," said Colonnese. "These findings could help us understand the circuit basis of human EEG development to improve diagnosis and treatment of infants in vulnerable situations. By putting the development of the EEG on a mechanistic basis we hope to increase its utility in the clinic."

Colonnese and his team, which includes Yasunobu Murata, PhD, a research scientist in Colonnese's lab at GW and co-author of the study, are working to develop a comprehensive atlas of EEG patterns and brain lesions that cause them to aid in this process.

Now that they have established the thalamus is in control, he said, the next step is to further define what circuit changes occur in brain development so clinicians can pinpoint from an EEG what's gone wrong in cases like hypoxic-ischemic encephalopathy.
-end-
The study, titled "Thalamus Controls Development and Expression of Arousal States in Visual Cortex" is published in the Journal of Neuroscience at http://www.jneurosci.org/content/38/41/8772.

Media: To interview Dr. Colonnese, please contact Ashley Rizzardo at 202-994-8679 or amrizz713@gwu.edu.

About the GW School of Medicine and Health Sciences

Founded in 1824, the GW School of Medicine and Health Sciences (SMHS) was the first medical school in the nation's capital and is the 11th oldest in the country. Working together in our nation's capital, with integrity and resolve, the GW SMHS is committed to improving the health and well-being of our local, national and global communities. smhs.gwu.edu

George Washington University

Related Brain Activity Articles:

How dopamine drives brain activity
Using a specialized magnetic resonance imaging (MRI) sensor that can track dopamine levels, MIT neuroscientists have discovered how dopamine released deep within the brain influences distant brain regions.
Brain activity intensity drives need for sleep
The intensity of brain activity during the day, notwithstanding how long we've been awake, appears to increase our need for sleep, according to a new UCL study in zebrafish, published in Neuron.
Do babies like yawning? Evidence from brain activity
Contagious yawning is observed in many mammals, but there is no such report in human babies.
Understanding brain activity when you name what you see
Using complex statistical methods and fast measurement techniques, researchers found how the brain network comes up with the right word and enables us to say it.
Your brain activity can be used to measure how well you understand a concept
As students learn a new concept, measuring how well they grasp it has often depended on traditional paper and pencil tests.
Altered brain activity in antisocial teenagers
Teenage girls with problematic social behavior display reduced brain activity and weaker connectivity between the brain regions implicated in emotion regulation.
Gender impacts brain activity in alcoholics
Compared to alcoholic women, alcoholic men have more diminished brain activity in areas responsible for emotional processing (limbic regions including the amygdala and hippocampus), as well as memory and social processing (cortical regions including the superior frontal and supramarginal regions) among other functions.
Light, physical activity reduces brain aging
Incremental physical activity, even at light intensity, is associated with larger brain volume and healthy brain aging.
Measuring brain activity in milliseconds possible through new research
Researchers from King's College London, Harvard and INSERM-Paris have discovered a new way to measure brain function in milliseconds using magnetic resonance elastography (MRE).
Autism: Brain activity as a biomarker
Researchers from Jülich, Switzerland, France, the Netherlands, and the UK have discovered specific activity patterns in the brains of people with autism.
More Brain Activity News and Brain Activity Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.