Nav: Home

Genetic Achilles heel hurts humans fighting hepatitis C

October 11, 2018

An antimicrobial signaling molecule called IFNλ4 has lower activity against the hepatitis C virus in the vast majority of humans compared with chimpanzees and African hunter-gatherer Pygmies, according to a study published October 11 in the open-access journal PLOS Pathogens by John McLauchlan's research team at the MRC-University of Glasgow Centre for Virus Research in the UK, and colleagues.

As antimicrobial signaling molecules, type III or lambda interferons (IFNλs) are critical for defending against infection with diverse pathogens, including bacteria, fungi and viruses. Counterintuitively, a natural mutation that prevents IFNλ4 production improves hepatitis C virus clearance in humans. However, the underlying mechanisms remain poorly understood. To further understand how genetic variation affects IFNλ4 function, McLauchlan and his colleagues screened a comprehensive panel of all natural human IFNλ4 variants for their antiviral potential and carried out a comparative analysis with related species.

Remarkably, the most common form of human IFNλ4 is less able to protect cells from pathogenic virus infection than the equivalent protein from our closest living relative, the chimpanzee, due to a single amino acid substitution. African hunter-gatherer Pygmies also have a more active IFNλ4, which was likely reacquired following the divergence of chimpanzees and humans. The findings suggest that the evolution of the interferon lambda 4 (IFNL4) gene has placed humans at a disadvantage when infected with pathogens such as hepatitis C virus. The driver of reduced IFNλ4 antiviral activity in humans remains unknown but likely arose in Africa very early during human evolution between six million and 360,000 years ago.

John McLauchlan and Connor Bamford, the first author on the paper, commented, "We were astonished that humans were the only species to carry this mutation and it remains a mystery as to why the human population has evolved an antiviral gene that is less able to control viral infections compared to our closest ancestors."
-end-


PLOS

Related Hepatitis Articles:

Hepatitis C increasing among pregnant women
Hepatitis C infections among pregnant women nearly doubled from 2009-2014, likely a consequence of the country's increasing opioid epidemic that is disproportionately affecting rural areas of states including Tennessee and West Virginia.
WHO's Global Hepatitis Report sets baseline to eliminate viral hepatitis by 2030
The World Hepatitis Alliance today welcomes the publication of the first-ever Global Hepatitis Report by the World Health Organization (WHO), which includes new data on the prevalence and global burden of viral hepatitis.
Elimination of viral hepatitis by 2030: What's needed and how do we get there?
This first European Action Plan provides an important driver to aid countries in their fight against viral hepatitis, to which ECDC had the opportunity to contribute directly.
Discovery of new Hepatitis C virus mechanism
Researchers at Osaka University, Japan uncovered the mechanisms that suppress the propagation of the hepatitis C virus with the potential of improving pathological liver conditions.
Is Europe ready to eliminate viral hepatitis?
Currently, Europe records around 57,000 newly diagnosed acute and chronic cases of hepatitis B and C each year.
Why baby boomers need a hepatitis C screening
Hepatitis C affects a disproportionate amount of older Americans, born between 1945 and 1965.
Counterattack of the hepatitis B virus
The hepatitis B virus (HBV) infects liver cells. Drugs are available to treat HBV, but they rarely cure the infection, and so the virus typically returns after the treatment ends.
Hepatitis C tied to increased risk of Parkinson's
The hepatitis C virus may be associated with an increased risk of developing Parkinson's disease, according to a study published in the Dec.
The hepatitis A virus is of animal origin
The hepatitis A virus can trigger acute liver inflammation which generally has a mild course in small children but which can become dangerous in adults.
Modeling the helicase to understand hepatitis C
NS3 is an enzyme specific to the hepatitis C virus.

Related Hepatitis Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...