Physicists look to navigational 'rhumb lines' to study polymer's unique spindle structure

October 11, 2019

From the intricate patterns of pollen grains to the logarithmic spirals of nautilus shells, biology is full of complex patterns, shapes, and geometries. Many of these intricate structures play important roles in biological function, but can be difficult to create in a lab without state-of-the-art equipment or expensive and energy-consuming processes and materials.

A new study describes how spheres can be transformed into twisted spindles thanks to insights from 16th century navigational tools. Researchers show how polymers can contract into spiral structures, known as loxodromes, that have complex patterning ten times smaller than the width of a human hair. Published in Physical Review Letters, the research was conducted by University of Pennsylvania graduate student Helen Ansell, postdoc Daeseok Kim, and professors Randall Kamien and Eleni Katifori in the School of Arts and Sciences, in collaboration with Teresa Lopez-Leon of the École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI).

Kim, who worked on this project at ESPCI before coming to Penn, was inspired by other studies showing that a mixture of polymer and liquid crystal took on a new shape when placed in a different solvent. It was a change that was also reversible and reproducible, with little to no energy required to cause the change in shape.

To understand the interesting conformational changes that Kim had seen in the lab, he sought out theorists who could help make sense of how the polymer's geometry caused it to twist and contract. After seeing the microscopic images and data that was collected and analyzed by Kim, Ansell had an initial idea of what the spindle's structure might be: a loxodrome.

More commonly referred to as rhumb lines, a loxodrome is an arc that follows a constant angle as it cuts across a sphere. Sailors throughout the 16th-19th centuries used these lines to navigate, allowing them to set their compasses to a constant bearing so that their ship did not have to change its bearing.

"We tried to figure out if this was the case," Ansell says about investigating if her hypothesis was correct. "We think we found these loxodromes, so we had to go about comparing what does it look like versus the data."

Ansell then developed a mathematical model that describes how the spheres become elongated and twisted using the geometry of the loxodrome as a starting point. By comparing the results of her theory to the data generated by Kim, she was able to show that changing the solvent caused the polymers to shrink, which caused its shape to twist as the polymer chains along the sphere's lines of longitude became shorter.

At the top of the spindles are one micron spirals, nearly one hundred times smaller than the width of a human hair. Creating manmade patterns that small usually requires costly methods and equipment, but this method of making self-assembled small-scale structures using course-scale starting materials is much simpler.

The polymer loxodrome is the latest finding that delves into the Kamien group's interests in the crossover between chemistry and geometry. Kamien says that many interactions in biology, like protein folding, immune responses, and even smell, is usually depicted as a chemical bond, but emphasizes that geometry also drives much of what happens in biology.

"Think about proteins," says Kamien, "You have these different amino acids, and they attract in different ways, but when you're all done, you have this giant glob, and there's this little pocket that grabs the residues, so you think of it geometrically. Helen's explanation is completely geometrical: It doesn't involve anything specific about how the binding works."

For Kim, this research is an exciting first step for studying unique structures in other biological systems. By designing new types of polymer particles and testing them out in different conditions, he hopes to learn more about how shape drives function, especially in systems that twist and contract. "We could study some biological matter in nature by mimicking a similar topological model," he says, "And we may solve or study some complex problem in nature."

Now, entirely coincidentally, Ansell's efforts have laid the groundwork for another unrelated project she had been stuck on for some time which also appears to have a loxodrome solution.

"They just appear," she says about the twisted spindle shape.

"As Pasteur said, luck favors the prepared mind," adds Kamien. "Now, we're primed to look for them."
This research was supported by National Science Foundation Materials Research Science and Engineering Center grants DMR-1720530 and DMR-1720530, NSF CAREER Award PHY-1554887, a Simons Investigator Grant from the Simons Foundation, and Engineering and Physical Sciences Research Council Grant EP/R014604/1.

University of Pennsylvania

Related Polymer Articles from Brightsurf:

Impurities enhance polymer LED efficiencies
New research published in EPJ B reveals that the higher-than-expected efficiency of PLEDs can be reached through interactions between triplet excitons, and impurities embedded in their polymer layers.

Safety of bioabsorbable polymer against durable polymer DES in high-risk PCI patients
A novel study sought to reveal whether drug-eluting stents (DES) coated with bioabsorbable polymer (BP) presented a safety advantage without compromising efficacy compared to durable polymer (DP) formulations.

Polymer membranes could benefit from taking a dip
A new technique developed by a team including researchers from the US Department of Energy (DOE)'s Argonne National Laboratory makes atomic layer deposition possible on nearly any membrane.

New polymer material may help batteries become self-healing, recyclable
Lithium-ion batteries are notorious for developing internal electrical shorts that can ignite a battery's liquid electrolytes, leading to explosions and fires.

Researchers add order to polymer gels
Gel-like materials have a wide range of applications, especially in chemistry and medicine.

Bundlemers (new polymer units) could transform industries
From tires to clothes to shampoo, many ubiquitous products are made with polymers, large chain-like molecules made of smaller sub-units, called monomers, bonded together.

New synthetic polymer degradable under very mild acidic conditions
A new type of degradable synthetic polymer was prepared by Rh-catalyzed three-component polymerization of a bis(diazocarbonyl) compound, bis(1,3-diketone), and tetrahydrofuran.

New polymer tackles PFAS pollution
toxic polyfluorinated alkyl substances (PFAS) pollution -- commonly used in non-stick and protective coatings, lubricants and aviation fire-fighting foams -- can now be removed from the environment thanks to a new low-cost, safe and environmentally friendly polymer.

New polymer films conduct heat instead of trapping it
MIT engineers have flipped the picture of the standard polymer insulator, by fabricating thin polymer films that conduct heat -- an ability normally associated with metals.

Polymer reversibly glows white when stretched
Polymers that change their appearance in response to mechanical forces can warn of damage developing in a material before the stress causes structural failure.

Read More: Polymer News and Polymer Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to