Nav: Home

Overcoming the blood-brain-barrier: Delivering therapeutics to the brain

October 11, 2019

For the first time, scientists have identified a simple way that can effectively transport medication into the brain - which could lead to improved treatments for neurological and neurodegenerative diseases.

In a study published today in Nature Communications, scientists from Newcastle University, UK, have led an international team in a major breakthrough in unlocking the secrets of how medications can infiltrate the brain.

Blood capillaries in the brain are not permeable to many drugs and the majority are excluded from the brain by a protective barrier, called the blood-brain-barrier (BBB), and current treatment options are risky.

Some viruses, however, have found ways to bypass the BBB and enter the brain. To treat certain neurological and neurodegenerative diseases, medication has to use modified viruses to bypass this barrier and deliver drugs to the area.

Major breakthrough

The team has now engineered small particles, similar to the size of viruses, from a peptide that can behave like a carrier to the brain and can be packed with drugs for intravenous injection.

Professor Moein Moghimi, who led the research, said: "Crossing the blood-brain-barrier has hindered the industry from effectively addressing central nervous system diseases, including brain tumours, and many neurological diseases like Parkinson's, Alzheimer's and Huntington's.

"This breakthrough - based on more than 10 years of research - has significant implications for crossing BBB and other biological barriers that have created challenges for drug delivery.

"Our breakthrough allows for minimally invasive combination delivery through an intravenous injection of various drugs, peptides and nucleic acid therapeutics to the brain."

At present, treatment of neurological disorders involves difficulties in 'packaging' viruses safely and medication is usually administered by injection into the cerebrospinal fluid, which is not without risks.

The new technological breakthrough in delivering genetic materials to cells in the brain has used a peptide component from a virus that targets the brain (a bacteriophage fd). The peptide was synthesised and modified slightly, and when water was added it spontaneously formed a 'small, hairy particle'.

Scientists found that when the developed particle was injected into a mouse model, the system targeted the brain, crossing the blood-brain-barrier, reaching neurons and microglia cells in the brain.

Professor Moghimi added: "We are very excited by our research - our delivery system is versatile and amenable to modifications, so, in principle, we can hopefully address shortfalls in drug delivery to the brain through intravenous injection.

"We have a long way to go, but we hope that our technology platform may open up many opportunities to address neurodegenerative diseases with modern therapeutics and genetic drugs."

Safe technique

Through the mouse model, scientists found their technique was safe. Further research will test the technology in animal disease models in preparation for clinical trials.

Gary Leo, SMDG's SVP of Corporate Development and former national president and CEO of the ALS Association, USA, said: "Bearing in mind the fact that neurological disorders are growing in incidence faster than any other disease class worldwide, governments will face a huge burden and increasing demands for treatment and support services.

"New knowledge is required to develop effective treatment strategies, and the new technology reported in Nature Communications is a promising achievement to fulfil these goals."
-end-
Reference

Crossing the blood-brain-barrier with nanoligand drug carriers self-assembled from a phage display Peptide

Lin-Ping Wu et al.

Nature Communications. Doi: 10.1038/s41467-019-12554-2

Newcastle University

Related Neurodegenerative Diseases Articles:

Study suggests a protein could play key role in neurodegenerative diseases
Research led by Queen Mary University of London and the University of Seville around one protein's role in regulating brain inflammation could improve our understanding of neurodegenerative diseases.
Beyond finding a gene: Same repeated stretch of DNA in three neurodegenerative diseases
Four different rare diseases are all caused by the same short segment of DNA repeated too many times, a mutation researchers call noncoding expanded tandem repeats.
Protein complex may help prevent neurodegenerative diseases
The protein complex NAC in the cell helps to prevent the aggregration of proteins associated with several neurodegenerative diseases.
Experimental Biology highlights -- Cancer, neurodegenerative diseases and medical news
Embargoed press materials are now available for the Experimental Biology (EB) 2019 meeting, to be held in Orlando April 6-9.
Circadian clock plays unexpected role in neurodegenerative diseases
Northwestern University researchers induced jet lag in a fruit fly model of Huntington disease and found that jet lag protected the flies' neurons.
Neurodegenerative diseases identified using artificial intelligence
Researchers have developed an artificial intelligence platform to detect a range of neurodegenerative disease in human brain tissue samples, including Alzheimer's disease and chronic traumatic encephalopathy.
Open-science model for drug discovery expands to neurodegenerative diseases
Parkinson's disease and Amyotrophic Lateral Sclerosis are the newest frontiers for open science drug discovery, a global movement led by academic scientists in Toronto that puts knowledge sharing and medication affordability ahead of patents and profits.
New stage in the development of corrective mechanisms for ischemia and neurodegenerative diseases
In the last decade, there has been a growing body of experimental data confirming that neural networks are the minimal functional unit of the nervous system.
Scientists from TU Dresden search for new methods to cure neurodegenerative diseases
Behavioural experiments confirm: Additional neurons improve brain function.
Using graphene to detect ALS, other neurodegenerative diseases
Graphene can determine whether cerebrospinal fluid comes from a person with ALS, MS or from someone without a neurodegenerative disease.
More Neurodegenerative Diseases News and Neurodegenerative Diseases Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.