Nav: Home

Imaging tumor stiffness could help enhance treatment for breast and pancreatic cancer

October 11, 2019

Using a non-invasive imaging technique that measures the stiffness of tissues gives crucial new information about cancer architecture and could aid the delivery of treatment to the most challenging tumours, new research shows.

Magnetic resonance elastography was able to visualise and measure how stiff and dense tumours are in mice. The technique, which can be implemented on conventional clinical MRI scanners, may help select the best treatment course for some cancer patients.

Scientists at The Institute of Cancer Research, London, found that using their new type of scan could assess the contribution of collagen to relative stiffness across a number of different tumour types.

This in turn could identify tumours in which there is the potential to use new drugs designed to 'weaken' the structure holding together tumours - thereby giving other drugs access to cancer cells in the centre of the tumour.

Initial studies established that collagen was key to keeping breast and pancreatic cancers stiff and inaccessible to treatments. In contrast, tumours arising from the nervous system, such as some forms of childhood cancer and brain tumours, were relatively soft and lacking in collagen.

The study, published in the journal Cancer Research today (Friday), was largely funded by the European Union, Cancer Research UK and the Rosetrees Trust.

Tumours are masses of uncontrolled cellular growth, formed of dense and compact networks of cells, structural fibres and blood vessels. It can therefore be challenging to effectively deliver treatment to some tumours as the mass is often stiff and difficult to penetrate.

The researchers at The Institute of Cancer Research (ICR), working in collaboration with King's College London, found that, for example, breast tumours were around twice as stiff as brain tumours and around three times as dense. The major contributor to this increased tumour stiffness was collagen - a key component of bone, cartilage, tendons and the extracellular matrix that holds tissues together.

The findings suggest that the scan can monitor the weakening of the tumour structure through drugs designed to break down this extracellular matrix, such as collagenase. The technique could also be key to identifying the optimum time to efficiently deliver chemotherapeutic agents by showing when the tumour is most vulnerable.

Accordingly, the researchers found that the administration of collagenase resulted in a clear overall reduction in the elasticity and viscosity of breast tumours in mice - both of which fell by around a fifth.

The ICR researchers found that MR elastography provided extra details about tumour structure and density in addition to the information about growth and size given by standard MRI scans.

Study co-leader Dr Simon Robinson, Team Leader in Magnetic Resonance at The Institute of Cancer Research, London, said:

"Our research shows that this new type of scan can give valuable diagnostic information about breast and pancreatic tumours non-invasively by assessing their stiffness. If confirmed in a clinical trial, we could use this technique to identify patients most likely to benefit from treatments that target the dense scaffold upon which these tumours grow. It gives us a new way of looking at cancers, and a potential way to monitor new treatments that alleviate tumour stiffness in order to help enhance the efficient delivery and uptake of chemotherapy."

Study co-leader Dr Yann Jamin, Children with Cancer UK Research Fellow and Senior Researcher in the Magnetic Resonance team, at The Institute of Cancer Research, London, said:

"There's a lot of research activity centred on finding new therapies designed to help anti-cancer drugs reach their target in breast and pancreatic cancers, which can be so stiff and dense that they are impenetrable.

"We are very excited to have found a rapid scan that can be incorporated into a current routine clinical MRI examination and can potentially monitor the effects of these new tumour-weakening therapies, and assist the development and delivery of medicines which could save or extend lives."

Natasha Paton at Cancer Research UK said:

"Some tumours, like breast and pancreatic, are stiff and dense. Because of this, drugs are unable to reach deep inside the tumour and the cancer becomes harder to treat. Results of this pre-clinical study in mice show that using elastography to measure stiffness alongside standard imaging scans may help doctors deliver treatments more effectively to cancers that are known for their stiffness.

"Specialist imaging techniques have made a huge contribution to improving the way doctors diagnose, monitor and treat people with cancer, and it will be interesting to see if these results can be translated to the clinic."
-end-
The research was also supported by Children with Cancer UK and the Wellcome Trust.

Institute of Cancer Research

Related Cancer Articles:

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.
Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.
More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.
New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.
American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.
Oncotarget: Cancer pioneer employs physics to approach cancer in last research article
In the cover article of Tuesday's issue of Oncotarget, James Frost, MD, PhD, Kenneth Pienta, MD, and the late Donald Coffey, Ph.D., use a theory of physical and biophysical symmetry to derive a new conceptualization of cancer.
Health indicators for newborns of breast cancer survivors may vary by cancer type
In a study published in the International Journal of Cancer, researchers from the UNC Lineberger Comprehensive Cancer Center analyzed health indicators for children born to young breast cancer survivors in North Carolina.
Few women with history of breast cancer and ovarian cancer take a recommended genetic test
More than 80 percent of women living with a history of breast or ovarian cancer at high-risk of having a gene mutation have never taken the test that can detect it.
Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
More Cancer News and Cancer Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.