Adipogenic progenitors keep muscle stem cells young

October 11, 2019

In adult skeletal muscle, loss of myofiber integrity caused by mechanical injuries or diseases are repaired by resident muscle stem cells, called satellite cells, which promptly exit from quiescence after disruption of muscle architecture to expand, differentiate and drive tissue regeneration.

Dr. Jerome N. Feige from Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland said, "Fibro/adipogenic progenitors constitute a population of interstitial mesenchymal cells in skeletal muscle which are devoid of myogenic potential, but support muscle stem cell commitment and can differentiate to the adipogenic or fibrotic lineages."

Thus, FAPs are active regulators of cellular communication in skeletal muscle niche where they directly control tissue homeostasis and regeneration by supporting Mu SCs and myofibers.

In a recent study, the author's lab investigated how aging influences the fate of FAPs and their cross-talk with Mu SCs to regulate the balance between myogenesis, adipogenesis and fibrosis in skeletal muscle.

Interestingly, aged FAPs fail to efficiently amplify following muscle injury and aging alters the capacity of FAPs to support Mu SC amplification and commitment.

Both in-vitro co-culture and in-vivo transplantation of young FAPs rejuvenate aged Mu SC function, but aged FAPs lose the ability to efficiently support Mu SCs.

The Feige Research team concluded, "FAPs are also likely a heterogeneous population and the clonal selection of different fates of FAPs during aging suggests a differential effect of age on distinct subpopulations.

While Tie2- expressing FAPs predominantly reside within neonatal and adult homeostatic muscles, another injury-activated subpopulation of FAPs characterized by Vcam1 expression is associated with regeneration of injured myofibers."
-end-
Full Text - https://www.aging-us.com/article/102304/text

Correspondence to: Jerome N. Feige email: Jerome.feige@rd.nestle.com

Keywords: muscle stem cell, regeneration, aging, fibro/adipogenic progenitor, niche

About Aging-US

Launched in 2009, Aging-US publishes papers of general interest and biological significance in all fields of aging research as well as topics beyond traditional gerontology, including, but not limited to, cellular and molecular biology, human age-related diseases, pathology in model organisms, cancer, signal transduction pathways (e.g., p53, sirtuins, and PI-3K/AKT/mTOR among others), and approaches to modulating these signaling pathways.

To learn more about Aging-US, please visit http://www.Aging-US.com or connect with @AgingJrnl

Aging-US is published by Impact Journals, LLC to learn more please visit http://www.ImpactJournals.com or connect with @ImpactJrnls

Impact Journals LLC

Related Skeletal Muscle Articles from Brightsurf:

Skeletal muscle development and regeneration mechanisms vary by gender
Researchers at Kumamoto University, Japan generated mice lacking the estrogen receptor beta (ERĪ²) gene, both fiber-specific and muscle stem cell-specific, which resulted in abnormalities in the growth and regeneration of skeletal muscle in female mice.

Different response of mitochondrial respiration in skeletal muscle and adipose tissue to endurance e
In obese individuals, endurance exercise improves fitness and increases the number of mitochondria * and cellular respiration in skeletal muscles.

Skeletal study suggests at least 11 fish species are capable of walking
An international team of scientists has identified at least 11 species of fish suspected to have land-walking abilities.

Targeting deep areas of the skeletal muscles effectively alleviates postoperative pain
To address postoperative muscle pain in patients undergoing abdominal surgery, researchers developed a new method of effective pain control called needle electrical twitch obtaining intramuscular stimulation (NETOIMS).

Research reveals insights into bioprinted skeletal muscle tissue models
SUTD collaborates with NTU to provide in-depth analysis of 3D in vitro biomimetic skeletal muscle tissue models, highlighting the great potential of bioprinting technology.

Surplus antioxidants are pathogenic for hearts and skeletal muscle
Oxidative stress can be pathological. Now researchers report that the other end of the redox spectrum, reductive stress, is also pathological.

UCLA scientists create first roadmap of human skeletal muscle development
An interdisciplinary team of researchers at the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at UCLA has developed a first-of-its-kind roadmap of how human skeletal muscle develops, including the formation of muscle stem cells.

Bone or cartilage? Presence of fatty acids determines skeletal stem cell development
In the event of a bone fracture, fatty acids in our blood signal to stem cells that they have to develop into bone-forming cells.

Neural cells speed up function in 3D bioprinted skeletal muscle constructs
Wake Forest Institute for Regenerative Medicine scientists improve on 3D bioprinting research by investigating the effects of neural cell integration into bioprinted muscle constructs to accelerate functional muscle regeneration.

Bad to the bone: Specific gut bacterium impairs normal skeletal growth and maturation
Bone mass accrual is regulated by the gut microbiome as well as by diet and exercise.

Read More: Skeletal Muscle News and Skeletal Muscle Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.