Nav: Home

Adipogenic progenitors keep muscle stem cells young

October 11, 2019

In adult skeletal muscle, loss of myofiber integrity caused by mechanical injuries or diseases are repaired by resident muscle stem cells, called satellite cells, which promptly exit from quiescence after disruption of muscle architecture to expand, differentiate and drive tissue regeneration.

Dr. Jerome N. Feige from Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland said, "Fibro/adipogenic progenitors constitute a population of interstitial mesenchymal cells in skeletal muscle which are devoid of myogenic potential, but support muscle stem cell commitment and can differentiate to the adipogenic or fibrotic lineages."

Thus, FAPs are active regulators of cellular communication in skeletal muscle niche where they directly control tissue homeostasis and regeneration by supporting Mu SCs and myofibers.

In a recent study, the author's lab investigated how aging influences the fate of FAPs and their cross-talk with Mu SCs to regulate the balance between myogenesis, adipogenesis and fibrosis in skeletal muscle.

Interestingly, aged FAPs fail to efficiently amplify following muscle injury and aging alters the capacity of FAPs to support Mu SC amplification and commitment.

Both in-vitro co-culture and in-vivo transplantation of young FAPs rejuvenate aged Mu SC function, but aged FAPs lose the ability to efficiently support Mu SCs.

The Feige Research team concluded, "FAPs are also likely a heterogeneous population and the clonal selection of different fates of FAPs during aging suggests a differential effect of age on distinct subpopulations.

While Tie2- expressing FAPs predominantly reside within neonatal and adult homeostatic muscles, another injury-activated subpopulation of FAPs characterized by Vcam1 expression is associated with regeneration of injured myofibers."
-end-
Full Text - https://www.aging-us.com/article/102304/text

Correspondence to: Jerome N. Feige email: Jerome.feige@rd.nestle.com

Keywords: muscle stem cell, regeneration, aging, fibro/adipogenic progenitor, niche

About Aging-US

Launched in 2009, Aging-US publishes papers of general interest and biological significance in all fields of aging research as well as topics beyond traditional gerontology, including, but not limited to, cellular and molecular biology, human age-related diseases, pathology in model organisms, cancer, signal transduction pathways (e.g., p53, sirtuins, and PI-3K/AKT/mTOR among others), and approaches to modulating these signaling pathways.

To learn more about Aging-US, please visit http://www.Aging-US.com or connect with @AgingJrnl

Aging-US is published by Impact Journals, LLC to learn more please visit http://www.ImpactJournals.com or connect with @ImpactJrnls

Impact Journals LLC

Related Skeletal Muscle Articles:

Link between gut microbes & muscle growth suggests future approach to tackle muscle loss
Scientists led by NTU Singapore's Professor Sven Pettersson established a link between gut microbes and muscle growth and function -- a finding that could open new doors to interventions for age-related skeletal muscle loss.
Skeletal shapes key to rapid recognition of objects
In the blink of an eye, the human visual system can process an object, determining whether it's a cup or a sock within milliseconds, and with seemingly little effort.
Chloride-channel in muscle cells provides new insights for muscle diseases
Researchers from the University of Copenhagen have mapped the structure of an important channel in human muscle cells.
New skeletal disease found and explained
Researchers at Karolinska Institutet in Sweden have discovered a new and rare skeletal disease.
How diabetes causes muscle loss
Diabetes is associated with various health problems including decline in skeletal muscle mass.
Unintended side effects: antibiotic disruption of the gut microbiome dysregulates skeletal health
Diet and exercise regulate the accrual of bone mass, but some evidence suggests the microbiome may also play a role.
Central role of transforming growth factor type beta 1 in skeletal muscle dysfunctions
In this review we present the critical and recent antecedents regarding the mechanisms and cellular targets involved in the effects of TGF-β1 in the muscle, in pathological processes such as the inhibition of regeneration, fibrosis and atrophy.
Muscle-building proteins hold clues to ALS, muscle degeneration
Amyloid-like protein assemblies, long believed to be toxic and fuel diseases like ALS, have been found to play a key role in healthy muscle regeneration.
Unique type of skeletal stem cells found in 'resting zone' are actually hard at work
Skeletal stem cells are valuable because it's thought they can heal many types of bone injury, but they're difficult to find because researchers don't know exactly what they look like or where they live.
Skeletal stem cells regress when tasked with extensive regeneration
Adult mouse skeletal stem cells in the jaw revert to a more developmentally flexible state when called upon to regenerate large portions of bone and tissue, according to a study by researchers at the Stanford University School of Medicine.
More Skeletal Muscle News and Skeletal Muscle Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.