Nav: Home

Shaping nanoparticles for improved quantum information technology

October 11, 2019

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National Laboratory, have contributed to a recently published Nature Communications paper that reports the cause behind a key quantum property of donut-like nanoparticles called "semiconductor quantum rings."  This property may find application in quantum information storage, communication, and computing in future technologies.

"If you illuminate a two-dimensional photon emitter with a laser, you expect them to emit light along two axes, but what you expect is not necessarily what you get. To our surprise, these two-dimensional rings can emit light along one axis." -- Xuedan Ma, assistant scientist, Center for Nanoscale Materials

In this project, the CNM researchers collaborated with colleagues from the University of Chicago, Ludwig Maximilian University of Munich, University of Ottawa and National Research Council in Canada.

The team assembled circular rings made out of cadmium selenide, a semiconductor that lends itself to growing donut-shaped nanoparticles. These quantum rings are two-dimensional structures -- crystalline materials composed of a few layers of atoms. The advantage of semiconductors is that when researchers excite them with a laser, they emit photons.

"If you illuminate a two-dimensional photon emitter with a laser, you expect them to emit light along two axes," said Xuedan Ma, assistant scientist at CNM. "But what you expect is not necessarily what you get. To our surprise, these two-dimensional rings can emit light along one axis."

The team observed this effect when breaking the perfect rotational symmetry of the donut shape, causing them to be slightly elongated. "By this symmetry breaking," says Ma, "we can change the direction of light emission. We can thus control how photons come out of the donut and achieve coherent directional control."

Because the photons in the light emits from these rings along a single direction, rather than spreading out in all directions, researchers can tune this emission to effectively collect single photons. With this control, researchers can integrate topology information into the photons, which can then be used as messengers for carrying quantum information. It may even be possible to exploit these encoded photons for quantum networking and computation.

"If we can gain even greater control over the fabrication process, we could make nanoparticles with different shapes such as a clover with multiple holes or a rectangle with a hole in the center," noted Matthew Otten, a Maria Goeppert Mayer Fellow at Argonne's CNM. "Then, we might be able to encode more types of quantum information or more information into the nanoparticles."

"I should add that geometry is not the only factor in causing this quantum effect. The atomistic structure of the material also counts, as is often the case in nanoscale materials," said Ma.

A paper based on the study, "Uniaxial transition dipole moments in semiconductor quantum rings caused by broken rotational symmetry," appeared recently in Nature Communications. In addition to Ma and Otten, authors include Nicolai F. Hartmann, Igor Fedin, Dmitri Talapin, Moritz Cygorek, Pawel Hawrylak, Marek Korkusinski, Stephen Gray and Achim Hartschuh.
-end-
This work was supported by the DOE Office of Science.

About Argonne's Center for Nanoscale Materials
The Center for Nanoscale Materials is one of the five DOE Nanoscale Science Research Centers, premier national user facilities for interdisciplinary research at the nanoscale supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, Sandia and Los Alamos National Laboratories. For more information about the DOE NSRCs, please visit https://science.osti.gov/User-Facilities/User-Facilities-at-a-Glance.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The U.S. Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science.

DOE/Argonne National Laboratory

Related Nanoparticles Articles:

Nanoparticles: Acidic alert
Researchers of Ludwig-Maximilians-Universitaet (LMU) in Munich have synthesized nanoparticles that can be induced by a change in pH to release a deadly dose of ionized iron within cells.
3D reconstructions of individual nanoparticles
Want to find out how to design and build materials atom by atom?
Directing nanoparticles straight to tumors
Modern anticancer therapies aim to attack tumor cells while sparing healthy tissue.
Sweet nanoparticles trick kidney
Researchers engineer tiny particles with sugar molecules to prevent side effect in cancer therapy.
A megalibrary of nanoparticles
Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles.
Dialing up the heat on nanoparticles
Rapid progress in the field of metallic nanotechnology is sparking a science revolution that is likely to impact all areas of society, according to professor of physics Ventsislav Valev and his team at the University of Bath in the UK.
Illuminating the world of nanoparticles
Scientists at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed a light-based device that can act as a biosensor, detecting biological substances in materials; for example, harmful pathogens in food samples.
What happens to gold nanoparticles in cells?
Gold nanoparticles, which are supposed to be stable in biological environments, can be degraded inside cells.
Lighting up cardiovascular problems using nanoparticles
A new nanoparticle innovation that detects unstable calcifications that can trigger heart attacks and strokes may allow doctors to pinpoint when plaque on the walls of blood vessels becomes dangerous.
Cutting nanoparticles down to size -- new study
A new technique in chemistry could pave the way for producing uniform nanoparticles for use in drug delivery systems.
More Nanoparticles News and Nanoparticles Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.