Creating 2D heterostructures for future electronics

October 11, 2019

Nanomaterials could provide the basis of many emerging technologies, including extremely tiny, flexible, and transparent electronics.

While many nanomaterials exhibit promising electronic properties, scientists and engineers are still working to best integrate these materials together to eventually create semiconductors and circuits with them.

Northwestern Engineering researchers have created two-dimensional (2D) heterostructures from two of these materials, graphene and borophene, taking an important step toward creating intergrated circuits from these nanomaterials.

"If you were to crack open an integrated circuit inside a smartphone, you'd see many different materials integrated together," said Mark Hersam, Walter P. Murphy Professor of Materials Science and Engineering, who led the research. "However, we've reached the limits of many of those traditional materials. By integrating nanomaterials like borophene and graphene together, we are opening up new possibilities in nanoelectronics."

Supported by the Office for Naval Research and the National Science Foundation, the results were published October 11 in the journal Science Advances. In addition to Hersam, applied physics PhD student Xiaolong Liu co-authored this work.

Creating a new kind of heterostructure

Any integrated circuit contains many materials that perform different functions, like conducting electricity or keeping components electrically isolated. But while transistors within circuits have become smaller and smaller - thanks to advances in materials and manufacturing - they are close to reaching the limit of how small they can get.

Ultrathin 2D materials like graphene have the potential to bypass that problem, but integrating 2D materials together is difficult. These materials are only one atom thick, so if the two materials' atoms do not line up perfectly, the integration is unlikely to be successful. Unfortunately, most 2D materials do not match up at the atomic scale, presenting challenges for 2D integrated circuits.

Borophene, the 2D version of boron that Hersam and coworkers first synthesized in 2015, is polymorphic, meaning it can take on many different structures and adapt itself to its environment. That makes it an ideal candidate to combine with other 2D materials, like graphene.

To test whether it was possible to integrate the two materials into a single heterostructure, Hersam's lab grew both graphene and borophene on the same substrate. They grew the graphene first, since it grows at a higher temperature, then deposited boron on the same substrate and let it grow in regions where there was no graphene. This process resulted in lateral interfaces where, because of borophene's accommodating nature, the two materials stitched together at the atomic scale.

Measuring electronic transitions

The lab characterized the 2D heterostructure using a scanning tunneling microscope and found that the electronic transition across the interface was exceptionally abrupt - which means it could be ideal for creating tiny electronic devices.

"These results suggest that we can create ultrahigh density devices down the road," Hersam said. Ultimately, Hersam hopes to achieve increasingly complex 2D structures that lead to novel electronic devices and circuits. He and his team are working on creating additional heterostructures with borophene, combining it with an increasing number of the hundreds of known 2D materials.

"In the last 20 years, new materials have enabled miniaturization and correspondingly improved performance in transistor technology," he said. "Two-dimensional materials have the potential to make the next leap."

Northwestern University

Related Graphene Articles from Brightsurf:

How to stack graphene up to four layers
IBS research team reports a novel method to grow multi-layered, single-crystalline graphene with a selected stacking order in a wafer scale.

Graphene-Adsorbate van der Waals bonding memory inspires 'smart' graphene sensors
Electric field modulation of the graphene-adsorbate interaction induces unique van der Waals (vdW) bonding which were previously assumed to be randomized by thermal energy after the electric field is turned off.

Graphene: It is all about the toppings
The way graphene interacts with other materials depends on how these materials are brought into contact with the graphene.

Discovery of graphene switch
Researchers at Japan Advanced Institute of Science and Technology (JAIST) successfully developed the special in-situ transmission electron microscope technique to measure the current-voltage curve of graphene nanoribbon (GNR) with observing the edge structure and found that the electrical conductance of narrow GNRs with a zigzag edge structure abruptly increased above the critical bias voltage, indicating that which they are expected to be applied to switching devices, which are the smallest in the world.

New 'brick' for nanotechnology: Graphene Nanomesh
Researchers at Japan advanced institute of science and technology (JAIST) successfully fabricated suspended graphene nanomesh (GNM) by using the focused helium ion beam technology.

Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.

Graphene Flagship publishes handbook of graphene manufacturing
The EU-funded research project Graphene Flagship has published a comprehensive guide explaining how to produce and process graphene and related materials (GRMs).

How to induce magnetism in graphene
Graphene, a two-dimensional structure made of carbon, is a material with excellent mechani-cal, electronic and optical properties.

Graphene: The more you bend it, the softer it gets
New research by engineers at the University of Illinois combines atomic-scale experimentation with computer modeling to determine how much energy it takes to bend multilayer graphene -- a question that has eluded scientists since graphene was first isolated.

How do you know it's perfect graphene?
Scientists at the US Department of Energy's Ames Laboratory have discovered an indicator that reliably demonstrates a sample's high quality, and it was one that was hiding in plain sight for decades.

Read More: Graphene News and Graphene Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to