FSU scientist links iron imbalance to Parkinson's disease

October 12, 2004

TALLAHASSEE, Fla. You might want to toss those iron-fortified vitamins, because absent a diagnosed deficiency too much of a good thing can be bad.

Dietary iron imbalances either way spell trouble for healthy cells, triggering a chain of cellular events in the brain that increases the odds of developing Parkinson's disease, a degenerative condition affecting movement and balance in more than 1 million Americans each year. But excessive iron levels are worse -- much worse.

The findings from a study by Florida State University scientist Cathy Levenson are described in "The Role of Dietary Iron Restrictions in a Mouse Model of Parkinson's Disease" and will appear in an upcoming edition of Experimental Neurology. Levenson is an associate professor of nutrition, food and exercise sciences in FSU's College of Human Sciences and a faculty member in both the Program in Neuroscience and graduate program in molecular biophysics.

"We define our work here at the cellular level," said Levenson from her laboratory at FSU's Biomedical Research Facility. "Our primary research objective is to better understand how trace metal imbalances, which are associated with neuropsychiatric and neurodegenerative diseases, affect the molecular mechanisms that regulate gene expression."

Levenson performed the mouse model portion of the study in collaboration with Mark Mattson, Laboratory of Neurosciences chief at the National Institute on Aging in Bethesda, Md. Mice were fed varying amounts of iron to determine levels that precipitated onset or hastened the progression of Parkinson's-like symptoms such as tremors and balance problems, both in healthy rodents and where risk factors existed.

High levels of iron caused Parkinson's-like symptoms even in healthy mice without apparent risk factors for the illness, while accelerating the decline and death of those already diagnosed with the disease.

In contrast, low levels of iron delayed onset of Parkinson's in mice with risk factors and slowed progress of the disease in those already infected. But the low iron news was mixed.

Levenson also discovered that iron deficiencies in healthy risk-free rodents led to decreasing levels of dopamine, the neurotransmitter critical to relaying brain messages that control both balance and movement. Dopamine levels fall as the brain cells or "neurons" responsible for transporting it begin to "commit suicide" at higher-than normal-rates, triggering the chain of events that eventually precipitates the onset of Parkinson's disease.

The study confirms that both iron deficiency and toxicity are linked to the specific genes and neuronal suicide that lead to dopamine shortages responsible for development of Parkinson's.

Yet while low levels of iron then delay the onset of the disease once the neurological stage is set or slow the degenerative progress, iron toxicity both precipitates Parkinson's symptoms and hastens decline and death in existing victims.

Until further studies determine optimal levels of the essential nutrient, Levenson advises health-conscious consumers without doctors' orders to forego the mineral in tablet form in favor of natural dietary sources like red meats, dried fruits, dark leafy greens, tofu, cooked dried beans or wheat germ.

"I'd be nervous about just handing someone iron supplements and saying 'have at it," she said. "Self-medicating may have unintended consequences."
-end-
For more stories about FSU, visit our news site at www.fsu.com or "Research in Review magazine at: www.research.fsu.edu/media/rinr.html

Florida State University

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.