Scientists make atomic clock breakthrough

October 12, 2006

Reno, Nev. -- University of Nevada, Reno researchers Andrei Derevianko, Kyle Beloy, and Ulyana Safronova sat down six months ago and began work on a calculation that will help the world keep better time. In competition with scientists at the University of New South Wales, the University team led by associate professor Derevianko conducted research that increased the accuracy of atomic clocks, and they did it without running a single experiment. The team's findings were submitted to one of the most prestigious physics journals, the "Physical Review Letters," and they were published immediately.

"Our findings didn't take a lot of criticism," Derevianko said. "The results are too clear and obvious to be disputed."

In its research, the University team was able to isolate and explain a significant portion of the error in atomic clock output. The portion of error that the team studied has now been cut to one-fiftieth of its original size. The team's research was based solely on calculations, many of which were conducted on high performance computers.

Kyle Beloy, a third-year graduate student in the University's physics department, was the primary author of the paper containing the team's results and he was thrilled to play a role in such a notable find. Ulyana Safronova, a University research professor, also contributed to the findings.

In 2004, an Italian research team found some convincing evidence that suggested that atomic clocks were less accurate then previously thought. This evidence concerned the scientific community and gave the theory behind atomic clocks renewed international attention.

"It seemed like a good time to reexamine the problem," Derevianko said. "The uncertainty of the issue was a good primer for the research."

Atomic clock technology is based on the fact that atoms emit a fixed frequency. Lasers, which also have operating frequencies, can be calibrated so that their frequencies match that of a given atom. Since atomic frequencies are constant, syncing a laser with an atom and counting the laser's oscillations will always provide a steady measurement of time.

More accurate atomic clocks will lead to improved technologies. Most technical systems that employ satellites, including GPS technology, make use of atomic clocks; these technologies can now operate much more accurately.

The new findings are also paving the way for all kinds of new scientific experimentation. Extremely accurate measurements are required to make estimations about the behaviors of the universe. The extra time-keeping precision will allow scientists to explore hypotheses about the big-bang theory. The improved technology might even be accurate enough to provide evidence related to the controversial theory that universal constants, as in the amount of charge in an electron, are changing.
-end-
University of Nevada, Reno
Office of Marketing and Communications/MS 108, Reno 89557
www.unr.edu

Writer: Ben Hoffman, student intern

Founded in 1874 as Nevada's oldest, land-grant university the University of Nevada, Reno has more than 16,000 students, four campuses and hosts Cooperative Extension educational programs in all Nevada counties. It is ranked as one of the country's top 150 research institutions by the Carnegie Foundation, and is home to America's sixth-largest study abroad program, as well as the state's oldest and largest medical school.

University of Nevada, Reno

Related Atomic Clocks Articles from Brightsurf:

Internal clocks drive beta cell regeneration
Our body can repair itself after a damage. This phenomenon describes how cells that are still functional start to proliferate to compensate for the loss.

Timekeeping theory combines quantum clocks and Einstein's relativity
Cool research story with connections to atomic clocks, Einstein and quantum mechanics.

Signals from distant stars connect optical atomic clocks across Earth for the first time
Using radio telescopes observing distant stars, scientists have connected optical atomic clocks on different continents.

Olympic athletes should be mindful of their biological clocks
Biological clocks have sizeable effects on the performance of elite athletes.

Understanding the circadian clocks of individual cells
Two new studies led by UT Southwestern scientists outline how individual cells maintain their internal clocks, driven both through heritable and random means.

New design for 'optical ruler' could revolutionize clocks, telescopes, telecommunications
The newest version of these chip-based ''microcombs,'' created by researchers at the National Institute of Standards and Technology (NIST) and the University of California at Santa Barbara (UCSB), is poised to further advance time and frequency measurements by improving and extending the capabilities of these tiny devices.

Could resetting our internal clocks help control diabetes?
The circadian clock system allows the organisms to adjust to periodical changes of geophysical time.

Quantum paradox experiment may lead to more accurate clocks and sensors
More accurate clocks and sensors may result from a recently proposed experiment, linking an Einstein-devised paradox to quantum mechanics.

Could biological clocks in plants set the time for crop spraying?
Plants can tell the time, and this affects their responses to certain herbicides used in agriculture according to new research led by the University of Bristol.

UCI research helps shed new light on circadian clocks
Can your liver sense when you're staring at a television screen or cellphone late at night?

Read More: Atomic Clocks News and Atomic Clocks Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.