Physicists observe electron ejected from atom for first time

October 12, 2010

Air Force Office of Scientific Research-supported physicists at the University of California, Berkeley in collaboration with researchers from the Max Planck Institute of Quantum Optics and the U.S. Department of Energy's Lawrence Berkeley National Laboratory, became the first researchers to observe the motion of an atom's valence or outermost electrons in real-time by investigating the ejection of an electron from an atom by an intense laser pulse.

In the experiments, an electron in a krypton atom is removed by a laser pulse that lasts less than four femtoseconds (one femtosecond is one millionth of one billionth of a second). This process leaves behind an atom with a pulsating positively charged hole in the valence shell, which originates from electronic wave functions of the atom.

The scientists led by Dr. Steve Leone, an ultrafast laser expert and the recent recipient of a National Security Science and Engineering Faculty Fellowship, used an extreme ultraviolet light pulse, the duration for which was 150 attoseconds (one attosecond is one billionth of one billionth of a second), to capture and photograph the movement of valence electrons for the first time.

This research into electron motions is expected to enable the scientists to better control processes and materials that will improve high-speed electronics and carbon-free energy sources that will benefit both the Air Force and consumers.

"If we want to understand high speed electronics, we need to work on changing molecular bonds in chemical reactions and the movement of electrons during chemical reactions or in complex solids which will only be possible by freezing time in a femtosecond," said Leone.

Dr. Michael R. Berman, program manager at AFOSR who is overseeing the scientists believes their research is an elegant example of the new capabilities of attosecond pulses to probe the dynamics of electron motions.

"This program and instrumentation will open new doors into probing fundamental physical processes on time scales faster than ever probed before."

Berman also noted, "These new tools will let us probe electron dynamics in materials and semiconductors and could help us understand and reduce electron loss processes to make electronics and devices like solar cells more efficient and to bring electronic data processing to its highest level."
-end-
ABOUT AFOSR: The Air Force Office of Scientific Research, located in Arlington, Virginia, continues to expand the horizon of scientific knowledge through its leadership and management of the Air Force's basic research program. As a vital component of the Air Force Research Laboratory, AFOSR's mission is to discover, shape, and champion basic science that profoundly impacts the future Air Force.

Air Force Office of Scientific Research

Related Electrons Articles from Brightsurf:

One-way street for electrons
An international team of physicists, led by researchers of the Universities of Oldenburg and Bremen, Germany, has recorded an ultrafast film of the directed energy transport between neighbouring molecules in a nanomaterial.

Mystery solved: a 'New Kind of Electrons'
Why do certain materials emit electrons with a very specific energy?

Sticky electrons: When repulsion turns into attraction
Scientists in Vienna explain what happens at a strange 'border line' in materials science: Under certain conditions, materials change from well-known behaviour to different, partly unexplained phenomena.

Self-imaging of a molecule by its own electrons
Researchers at the Max Born Institute (MBI) have shown that high-resolution movies of molecular dynamics can be recorded using electrons ejected from the molecule by an intense laser field.

Electrons in the fast lane
Microscopic structures could further improve perovskite solar cells

Laser takes pictures of electrons in crystals
Microscopes of visible light allow to see tiny objects as living cells and their interior.

Plasma electrons can be used to produce metallic films
Computers, mobile phones and all other electronic devices contain thousands of transistors, linked together by thin films of metal.

Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.

Researchers develop one-way street for electrons
The work has shown that these electron ratchets create geometric diodes that operate at room temperature and may unlock unprecedented abilities in the illusive terahertz regime.

Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.

Read More: Electrons News and Electrons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.