FDA funds pediatric trial testing genetically reprogrammed HSV to treat cancer

October 12, 2010

CINCINNATI - A clinical trial testing a genetically reprogrammed herpes simplex virus as treatment for deadly forms of childhood cancer has received a U.S. Food and Drug Administration grant to support the research.

The Phase I trial at Cincinnati Children's Hospital Medical Center currently focuses on testing the safety of the agent HSV1716 in patients. The study includes young patients with solid tumors such as rhabdomyosarcoma or Ewing's sarcoma. These cancers have limited treatment options and survival rates under 30 percent when the cancers recur and spread to other parts of the body.

Survival curves for stubborn, metastatic childhood cancers have leveled off in the last decade, underscoring the need for new therapeutic approaches, says Timothy Cripe, M.D., Ph.D., principal investigator on the trial and a physician/researcher in division of Hematology/Oncology at Cincinnati Children's.

"We've exhausted our ability to improve cure rates with existing conventional therapies and we need new solutions," he said. "This is why we are testing HSV. It's a potent virus that has been manipulated genetically with the intent of making it safe for the patient. When you're trying to fight fire with fire you need something that is strong."

The $600,000 grant from FDA is part of a program encouraging clinical development of "orphan drugs" as new treatments for rare diseases or conditions. The HSV1716 virus being tested in this trial was developed by Crusade Laboratories of Glasgow, Scotland.

HSV1716 is similar to other viruses now under development by Dr. Cripe and colleagues at Cincinnati Children's in that certain genes are removed so the virus does not infect healthy dormant cells or cause the disease in the recipient. Instead, the genetic manipulation is designed to prompt the virus to target, infect and degrade only rapidly dividing cancer cells.

Genetic information also can be added to HSV that programs the virus to attack cancer cells in other ways - such as activating certain types of chemotherapies in a one-two punch or destroying blood vessels that feed tumors. Research in mouse models of human cancer by Cripe's laboratory has shown oncolytic HSV agents to be effective at shrinking a variety of modeled tumor types, suggesting a possible approach for treating human disease.

"Our goal in the current HSV1716 trial is to light a fire to the cancer so that the virus replicates and spreads to the cancer cells," Dr. Cripe explained. "We have to take this one step at a time and the initial phase of the trial focuses on making sure the virus doesn't cause adverse side effects. It has been tested in Europe in adults with brain cancer, squamous cell carcinoma and melanoma and shown in those trials to be safe."

HSV1716 has also been tested extensively for safety in animal models at Cincinnati Children's Hospital by Dr. Cripe and in Europe prior to it being tested in people.

The Phase I trial will include up to 18 patients and is expected to last three years. The optimum safe dosing for this virus is unknown, so the study will sequentially increase dosing levels in small groups of patients and observe for side effects as the trial proceeds. This earliest phase tests the lowest dose on older children and young adults with solid tumor cancers who have limited or no standard therapy options available.

The researchers plan to add younger patients with earlier stages of cancer as the trial proceeds. They will not be able to determine if the safety trial is successful until all patients have received treatment and the results analyzed. As with all clinical trials of new anticancer therapies in patients, many factors can influence the risk for severe side effects and anticancer activity. Even though HSV1716 may cause tumor shrinkage in mouse models of pediatric cancer, it may not have antitumor effect in patients.
-end-
Initial funding for the trial came from a private foundation, Solving Kids Cancer, of New York. Preclinical research that helped lead to the trial was supported by the American Cancer Society, the National Cancer Institute, the Cincinnati Children's Hospital Medical Center Translational Research Initiative and local foundations, including CancerFree Kids, teeoffagainstcancer.org, the Katie Linz Foundation, The Sarah Zepernick Foundation, the TeamConnor Cancer Foundation and money donated in memory of Katie McKenna Cappel and Zachary Heringer.

For more information about the HSV1716 pediatric trial, please visit: http://www.cincinnatichildrens.org/svc/alpha/c/cancer-blood/cancer/sarcoma/hsv1716-pf.htm

About Cincinnati Children's

Cincinnati Children's Hospital Medical Center is one of just eight children's hospitals named to the Honor Roll in U.S. News and World Report's 2010-11 Best Children's Hospitals. It is ranked #1 for digestive disorders and highly ranked for its expertise in pulmonology, cancer, neonatology, heart and heart surgery, neurology and neurosurgery, diabetes and endocrinology, orthopedics, kidney disorders and urology. Cincinnati Children's is one of the top two recipients of pediatric research grants from the National Institutes of Health. It is internationally recognized for quality and transformation work by Leapfrog, The Joint Commission, the Institute for Healthcare Improvement, the federal Agency for Healthcare Research and Quality, and by hospitals and health organizations it works with globally. Additional information can be found at www.cincinnatichildrens.org.

Cincinnati Children's Hospital Medical Center

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.