Grant to explore nanotech anti-infective agent for soldiers' wounds

October 12, 2010

ANN ARBOR, Mich. -- The U.S. Department of Defense has awarded $1.5 million over three years to the Michigan Nanotechnology Institute for Medicine and Biological Sciences and to Ann Arbor-based NanoBio Corporation to develop and test nanoemulsions with potential to fight a wide range of wound infections, including drug-resistant forms.

Soldiers in Iraq and Afghanistan get infections, sometimes life-threatening, from shrapnel wounds, IED blast injuries and burns. Bacteria from soil, air and a soldier's skin can enter wounds on the battlefield. A treatment easily applied in battle zones and in hospitals that is broadly effective against bacteria, viruses and fungi would help reduce these infections.

Present therapies aren't effective enough against antibiotic-resistant strains of bacteria, and don't prevent or control a problem soldiers with severe burns encounter: They may fall victim to long-lasting inflammatory responses that delay healing.

"A broadly effective nanoemulsion-based wound treatment that can be safely and easily applied at the time of injury, without causing pain or interfering with wound healing, would have great value to prevent infection, increase survival and enable more rapid healing of wounded United States military personnel," says James R. Baker Jr., M.D., the principal investigator for the grant.

Baker directs the Michigan Nanotechnology Institute for Medicine and Biological Sciences (MNIMBS) at U-M. He is the Ruth Dow Doan Professor of Nanotechnology and allergy division chief at the U-M Medical School and is founder and CEO of NanoBio Corporation.

Nanoemulsions are made of soybean oil, alcohol, water and surfactants emulsified into droplets 200 to 600 nanometers in diameter. They have proved effective at killing a variety of bacteria, fungi and viruses in previous research.

The U-M Nanotechnology Institute and NanoBio will use the grant to develop 10 new formulations of nanoemulsions against bacteria, fungi and spores in lab culture studies, followed by animal studies for effectiveness and safety. If successful, the resulting nanoemulsion treatment would proceed to human trials.

The grant allows U-M and NanoBio scientists to investigate another promising application for nanoemulsion technology developed by Baker with Department of Defense funds in the 1990s. Uses for nanoemulsions include treatments for cold sores, now in phase 3 clinical trials, and for toenail fungus and cystic fibrosis infections, as well as vaccines against influenza and bioterrorism agents.

In a study published earlier this year, U-M researchers found that a nanoemulsion lotion used to treat burns in animals was able to reduce bacterial growth one-thousand-fold compared to control animals receiving no treatment or a placebo. The nanoemulsion also reduced inflammation processes that can cause burn injuries to worsen.
-end-
Patents/Disclosures: The patented nanoemulsion technology is licensed by U-M to NanoBio Corporation. Baker holds an equity interest in the company.

Co- investigators for the project: John LiPuma, M.D., professor of pediatrics and communicable diseases, U-M Medical School; Mark Hemmila, M.D., associate professor of surgery, U-M Medical School and the U-MTrauma Burn Research Laboratory; Douglas Smith, Ph.D., research assistant professor, U-M Department of Internal Medicine and MNIMBS; Paul E. Makidon, Ph.D., D.V.M., research investigator, U-M Department of Internal Medicine, Unit for Laboratory Animal Medicine and MNIMBS; Susan Ciotti, Ph.D., director of formulations research and development, NanoBio Corporation.

University of Michigan Health System

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.