Nav: Home

Millions of new regulatory elements found in human genome

October 12, 2011

An international research team led by Kerstin Lindblad-Toh at the Broad Institute, US and Uppsala University, Sweden has mapped and compared the genomes of 29 mammals. The findings, published in Nature, reveal millions of new regulatory elements in the human genome that in various ways govern how proteins are formed. The new knowledge is important for our understanding of how mutations in human genes give rise to diseases.

The human genome was mapped some ten years ago, but its function has been difficult to understand. Recent comparisons with mice, rats, and dogs, have shown that humans have more than 20,000 genes. However, it has been difficult to find the elements in the genome that determine when, where, and how genes produce proteins.

By comparing a large number of mammals, scientists have now created a catalogue of millions of regulatory elements found both between and within genes. These elements are incredibly important in making us humans into the complex organisms that we are, even though our genes are rather similar to those of other vertebrates," says the lead author of the study, Kerstin Lindblad-Toh, Scientific Director of Vertebrate Genome biology, at the Broad Institute in the US and professor of comparative genomics, Uppsala University, Sweden.

Human genes constitute only about 1.5 percent of the genome, whereas regulatory elements appear to take up about three times as much space. The researchers have now been able to show where a majority of these regulatory elements are located in the genome. By studying patterns in these elements, and combining this information with other types of genetic data, they have been able to understand how many of these regulatory elements function.

"The elements we find can have entirely different functions. They can make different cell types use different versions of a certain gene, or can turn off a gene if the concentration of a certain compound is too high in a cell. Above all we see that proteins that govern fetal development and the function of the nervous system have a huge number of regulatory elements," says Kerstin Lindblad-Toh.

The regulatory elements that were found in this comparison between 29 mammals are important for many of our central functions, which are shared by placental mammals. However, the scientists were also looking for how these elements changed over time in various groups of mammals as they adapted to different living conditions.

"Among other things, we can see what parts of proteins and what regulatory elements changed rapidly in primates and humans. With the help of about a hundred other mammal species, we believe we will understand the function of every key base in the human genome and get a better understanding of how changes in genes made rodents into rodents and primates into primates," says Kerstin Lindblad-Toh.

-end-

For more information, please contact:

Professor Kerstin Lindblad- Toh, Director of SciLifeLab Uppsala Department of Medical Biochemistry and Microbiology, Uppsala University 617-223-74-76, e-mail: kerstin.lindblad-toh@imbim.uu.se or through Cecilia Johansson, tel: 46-18-471-45-25

Lindblad-Toh K, et al. (2011) A high-resolution map of human evolutionary constraint using 29 mammals. Nature Oct 27; doi: 10.1038/nature10530

Uppsala University
A close look into the barley genome
An international consortium, with the participation of the Helmholtz Zentrum München, Plant Genome and Systems Biology Department (PGSB), has published methodologically significant data on the barley genome.
Barley genome sequenced
Looking for a better beer or single malt Scotch whiskey?
From Genome Research: Pathogen demonstrates genome flexibility in cystic fibrosis
Chronic lung infections can be devastating for patients with cystic fibrosis (CF), and infection by Burkholderia cenocepacia, one of the most common species found in cystic fibrosis patients, is often antibiotic resistant.
A three-dimensional map of the genome
Cells face a daunting task. They have to neatly pack a several meter-long thread of genetic material into a nucleus that measures only five micrometers across.
Rhino genome results
A study by San Diego Zoo Global reveals that the prospects for recovery of the critically endangered northern white rhinoceros -- of which only three individuals remain -- will reside with the genetic resources that have been banked at San Diego Zoo Global's Frozen Zoo®.
Science and legal experts debate future uses and impact of human genome editing in Gender & the Genome
Precise, economical genome editing tools such as CRISPR have made it possible to make targeted changes in genes, which could be applied to human embryos to correct mutations, prevent disease, or alter traits.
Genome: It's all about architecture
How do pathogens such as bacteria or parasites manage to hide from their host's immune system?
Accelerating genome analysis
An international team of scientists, led by researchers from A*STAR's Genome Institute of Singapore and the Bioinformatics Institute, have developed SIFT 4G (SIFT for Genomes) -- a software that can lead to faster genome analysis.
Packaging and unpacking of the genome
Single-cell techniques have been used to investigate histone replacement and chromatin remodeling in developing oocytes.
The astounding genome of the dinoflagellate
Dinoflagellates live free-floating in the ocean or symbiotically with corals, serving up -- or as -- lunch to a host of mollusks, tiny fish and coral species.

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.

Now Playing: Radiolab

Truth Trolls
Today, a third story of folks relentlessly searching for the truth. But this time, the truth seekers are an unlikely bunch... internet trolls.


Now Playing: TED Radio Hour

Rethinking School
For most of modern history, humans have placed smaller humans in institutions called schools. But what parts of this model still work? And what must change? This hour, TED speakers rethink education.TED speakers include teacher Tyler DeWitt, social entrepreneur Sal Khan, international education expert Andreas Schleicher, and educator Linda Cliatt-Wayman.