Nav: Home

Real-time, observable MRI delivery updated to improve stem cell therapy for Parkinson's

October 12, 2016

Putnam Valley, NY. (October 12, 2016) - In a study using Real-time intraoperative magnetic resonance imaging (RT-IMRI) to guide the transplantation of induced pluripotent stem cell (iPSC)-derived neurons into the brains of non-human primates modeled with Parkinson's disease, researchers found that RT-IMRI guidance not only allows for better visualization and monitoring of the procedure, but also helps cell survival.

The study will be published in the upcoming special American Society for Neural Therapy and Repair (ASNTR) issue of Cell Transplantation and is currently freely available on-line as an unedited, early epub at: http://www.ingentaconnect.com/content/cog/ct/pre-prints/content-ct-1545_vermilyea_et_al

Induced pluripotent stem cells, a type of stem cell that can be generated directly from adult cells, offer great benefits for regenerative medicine as they propagate indefinitely and can differentiate into a variety of cell types, such as neurons, heart, pancreatic, and liver cells.

In previous studies, the researchers have found that while iPSC-derived neurons provide great opportunities for cell replacement they also present challenges.

"Our team developed an MRI-compatible trajectory guidance system that has been successful for intraoperative MRI," said study lead author Dr. Marina E. Emborg, Preclinical Parkinson's Research Program Center, Wisconsin National Primate Research Center University of Wisconsin-Madison. "We recently upgraded the system for real-time targeting and guidance and, as a result of the improvements, the procedure provides several advances for cell delivery."

The researchers report that the advancements allow for real-time pressure readings that can prevent clogging during cell delivery. They also found a way to prevent exposure to air during the procedure. Both advancements, in addition to real-time observation by MRI, add to the procedure's efficacy and safety.

Using post-mortem brain analysis, the researchers found that the transplanted cells grafted and survived well in the test animals after transplantation.

"The application of the RT-IMRI system for intracerebral targeting and delivery of iPSC-derived neuroprogenitors is feasible and presents and the advantage of allowing monitoring of cell uploading and infusion," concluded the researchers. "These methods will be particularly valuable for clinical application where safety and efficacy of the treatment is defined by the accurate delivery of cells."

"Cell therapy is the cornerstone of regenerative medicine for neurodegenerative disease," said Dr. Paul R. Sanberg, Distinguished Professor at the University of South Florida, in Tampa, FL and Co-Editor-in-Chief for Cell Transplantation. "With the advent of iPSCs, the field has made significant advances. The current study expounds upon those advances by addressing logistical concerns regarding cell administration and tracking. This method has wide applicability and may be relevant for not only Parkinson's disease, but other neurodegenerative conditions as well."
-end-
Contact: Dr. Marina E. Emborg, Preclinical Parkinson's Research Program Center, Wisconsin National Primate Research Center University of Wisconsin-Madison,1223 Capitol Court, Madison, WI 53715, USA

Email: emborg@primate.wisc.edu
Tel: (608) 262-9714
Fax: (608) 263-3524

Citation: Vermilyea SC, Lu J, Olsen M, Guthrie S, Tao Y, Fekete EM, Riedel MK, Brunner K, Boettcher C, Bondarenko V, Brodsky E, Block WF, Alexander A, Zhang S-C, Emborg ME. Real-Time Intraoperative MRI Intracerebral Delivery of Induced Pluripotent Stem Cell-Derived Neurons. Cell Transplant. Appeared or available on-line: September 14, 2016.

The Co-Editors-in-Chief for CELL TRANSPLANTATION are at the Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA and the Center for Neuropsychiatry, China Medical University Hospital, TaiChung, Taiwan. Contact: Paul R. Sanberg at psanberg@health.usf.edu, Shinn-Zong Lin at shinnzong@yahoo.com.tw, or Associate Editor Samantha Portis at celltransplantation@gmail.com

News release by Florida Science Communications http://www.sciencescribe.net

Cell Transplantation Center of Excellence for Aging and Brain Repair

Related Neurons Articles:

How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Astrocytes protect neurons from toxic buildup
Neurons off-load toxic by-products to astrocytes, which process and recycle them.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
The salt-craving neurons
Pass the potato chips, please! New research discovers neural circuits that regulate craving and satiation for salty tastes.
When neurons are out of shape, antidepressants may not work
Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed medication for major depressive disorder (MDD), yet scientists still do not understand why the treatment does not work in nearly thirty percent of patients with MDD.
Losing neurons can sometimes not be that bad
Current thinking about Alzheimer's disease is that neuronal cell death in the brain is to blame for the cognitive havoc caused by the disease.
Neurons that fire together, don't always wire together
As the adage goes 'neurons that fire together, wire together,' but a new paper published today in Neuron demonstrates that, in addition to response similarity, projection target also constrains local connectivity.
Scientists accidentally reprogram mature mouse GABA neurons into dopaminergic-like neurons
Attempting to make dopamine-producing neurons out of glial cells in mouse brains, a group of researchers instead converted mature inhibitory neurons into dopaminergic cells.
More Neurons News and Neurons Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#542 Climate Doomsday
Have you heard? Climate change. We did it. And it's bad. It's going to be worse. We are already suffering the effects of it in many ways. How should we TALK about the dangers we are facing, though? Should we get people good and scared? Or give them hope? Or both? Host Bethany Brookshire talks with David Wallace-Wells and Sheril Kirschenbaum to find out. This episode is hosted by Bethany Brookshire, science writer from Science News. Related links: Why Climate Disasters Might Not Boost Public Engagement on Climate Change on The New York Times by Andrew Revkin The other kind...
Now Playing: Radiolab

An Announcement from Radiolab