Nav: Home

Nano-spike catalysts convert carbon dioxide directly into ethanol

October 12, 2016

OAK RIDGE, Tenn., Oct. 12, 2016--In a new twist to waste-to-fuel technology, scientists at the Department of Energy's Oak Ridge National Laboratory have developed an electrochemical process that uses tiny spikes of carbon and copper to turn carbon dioxide, a greenhouse gas, into ethanol. Their finding, which involves nanofabrication and catalysis science, was serendipitous.

"We discovered somewhat by accident that this material worked," said ORNL's Adam Rondinone, lead author of the team's study published in ChemistrySelect. "We were trying to study the first step of a proposed reaction when we realized that the catalyst was doing the entire reaction on its own."

The team used a catalyst made of carbon, copper and nitrogen and applied voltage to trigger a complicated chemical reaction that essentially reverses the combustion process. With the help of the nanotechnology-based catalyst which contains multiple reaction sites, the solution of carbon dioxide dissolved in water turned into ethanol with a yield of 63 percent. Typically, this type of electrochemical reaction results in a mix of several different products in small amounts.

"We're taking carbon dioxide, a waste product of combustion, and we're pushing that combustion reaction backwards with very high selectivity to a useful fuel," Rondinone said. "Ethanol was a surprise -- it's extremely difficult to go straight from carbon dioxide to ethanol with a single catalyst."

The catalyst's novelty lies in its nanoscale structure, consisting of copper nanoparticles embedded in carbon spikes. This nano-texturing approach avoids the use of expensive or rare metals such as platinum that limit the economic viability of many catalysts.

"By using common materials, but arranging them with nanotechnology, we figured out how to limit the side reactions and end up with the one thing that we want," Rondinone said.

The researchers' initial analysis suggests that the spiky textured surface of the catalysts provides ample reactive sites to facilitate the carbon dioxide-to-ethanol conversion.

"They are like 50-nanometer lightning rods that concentrate electrochemical reactivity at the tip of the spike," Rondinone said.

Given the technique's reliance on low-cost materials and an ability to operate at room temperature in water, the researchers believe the approach could be scaled up for industrially relevant applications. For instance, the process could be used to store excess electricity generated from variable power sources such as wind and solar.

"A process like this would allow you to consume extra electricity when it's available to make and store as ethanol," Rondinone said. "This could help to balance a grid supplied by intermittent renewable sources."

The researchers plan to refine their approach to improve the overall production rate and further study the catalyst's properties and behavior.

ORNL's Yang Song, Rui Peng, Dale Hensley, Peter Bonnesen, Liangbo Liang, Zili Wu, Harry Meyer III, Miaofang Chi, Cheng Ma, Bobby Sumpter and Adam Rondinone are coauthors on the study, which is published as "High-Selectivity Electrochemical Conversion of CO2 to Ethanol using a Copper Nanoparticle/N-Doped Graphene Electrode."
The work was supported by DOE's Office of Science and used resources at the ORNL's Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.

UT-Battelle manages ORNL for the DOE's Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit

Image 1:

Caption 1: ORNL's Yang Song (seated), Dale Hensley (standing left) and Adam Rondinone examine a carbon nanospike sample with a scanning electron microscope.

Image 2:

Caption 2: ORNL researchers developed a catalyst made of copper nanoparticles (seen as spheres) embedded in carbon nanospikes that can convert carbon dioxide into ethanol.


Video caption: ORNL researchers develop a nano-spike catalyst that converts carbon dioxide directly into ethanol.

NOTE TO EDITORS: You may read other press releases from Oak Ridge National Laboratory or learn more about the lab at Additional information about ORNL is available at the sites below:

Twitter -
RSS Feeds -
Flickr -
YouTube -
LinkedIn -

DOE/Oak Ridge National Laboratory

Related Greenhouse Gas Articles:

Atmospheric pressure impacts greenhouse gas emissions from leaky oil and gas wells
Fluctuations in atmospheric pressure can heavily influence how much natural gas leaks from wells below the ground surface at oil and gas sites, according to new University of British Columbia research.
Elusive compounds of greenhouse gas isolated by Warwick chemists
Nitrous oxide (N2O) is a potent atmospheric pollutant. Although naturally occurring, anthropogenic N2O emissions from intensive agricultural fertilisation, industrial processes, and combustion of fossil fuels and biomass are a major cause for concern.
Natural-gas leaks are important source of greenhouse gas emissions in Los Angeles
Liyin He, a Caltech graduate student, finds that methane in L.A.'s air correlates with the seasonal use of gas for heating homes and businesses
From greenhouse gas to fuel
University of Delaware scientists are part of an international team of researchers that has revealed a new approach to convert carbon dioxide gas into valuable chemicals and fuels.
UBC researchers explore an often ignored source of greenhouse gas
In a new study from UBC's Okanagan campus, researchers have discovered a surprising new source of carbon dioxide (CO2) emissions -- bicarbonates hidden in the lake water used to irrigate local orchards.
Observing the development of a deep-sea greenhouse gas filter
In a long-term study, marine scientists from Bremen for the first time observed the colonization of a deep-sea mud volcano after its eruption.
Corncob ethanol may help cut China's greenhouse gas emissions
A new Biofuels, Bioproducts and Biorefining study has found that using ethanol from corncobs for energy production may help reduce greenhouse gas emissions in China, if used instead of starch-based ethanol.
Bacteria eats greenhouse gas with a side of protein
With the ability to leech heavy metals from the environment and digest a potent greenhouse gas, methanotrophic bacteria pull double duty when it comes to cleaning up the environment.
Wandering greenhouse gas
On the seafloor of the shallow coastal regions north of Siberia, microorganisms produce methane when they break down plant remains.
Reducing the footprint of a greenhouse gas more potent than carbon dioxide
USC scientists have unlocked a new, more efficient pathway for converting one of our most potent greenhouse gases directly into basic chemicals for manufacturing plastics, agrochemicals and pharmaceuticals.
More Greenhouse Gas News and Greenhouse Gas Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.