Nav: Home

Eating may trigger bacterial therapy

October 12, 2016

In the future, eating well may be the best revenge on gastrointestinal ailments, according to scientists at Rice University.

The Rice lab led by synthetic biologist Matthew Bennett has received a major National Institutes of Health (NIH) grant to develop a library of programmed "plug-and-play" bacteria that live in the gut and respond to molecular triggers delivered through food to fight disease.

Bennett and his team are working on synthetic circuits that will allow doctors to trigger the expression of drugs where they're needed at the right time and in the right amount.

The circuits will be programmed into bacteria that live in harmony with the rest of the gut biome. These circuits are protein transcription factors that will await activation by dietary supplements. Once triggered, the proteins will prompt the bacteria to produce therapeutic drugs on-site.

The prestigious four-year R01 grant for nearly $2 million from NIH's National Institute of General Medical Sciences aims to advance the pioneering techniques reported in a Science paper last year. In that report, Bennett and his team described how they made living circuits from multiple types of bacteria that prompted cooperation among them. It was essentially the biological equivalent of a computer circuit involving multiple organisms with the ability to influence a population.

Having proven they can get engineered bacteria to cooperate with each other, researchers in Bennett's lab and collaborators at the University of Kansas Medical Center and the University of Houston intend to engineer and test a complete system.

"Our idea is that bacteria will produce and deliver drugs to your gut," he said. "We're developing the biological control systems physicians need to safely and effectively turn the bacteria on and off."

Bennett's collaborators are taking on major aspects of the project. "Liskin Swint-Kruse at Kansas is an expert in protein-structure function," he said. "Her lab is trying to understand how proteins can be engineered to respond to new small molecules. Krešimir Josi?, a mathematician at the University of Houston, is developing computational models that help us design the control systems for the synthetic bacteria.

"My lab will engineer the synthetic bacteria by integrating the parts developed by our collaborators," Bennett said. "The bacteria will be programmed to perform different tasks, depending on which supplements the physician provides the patient."

He said the researchers are using small, nontoxic molecules that can be ingested and shouldn't cause side effects. These molecules will serve as inputs to the biological equivalents of digital logic circuits. Combinations of two or more types of these molecules will help the researchers tune the system's response.

Bennett credited a grant he received earlier this year from the Gillson Longenbaugh Foundation with moving the research forward while he awaited word from NIH. "Foundation grants play a vital role in the establishment of novel research programs," he said.
-end-
Read the project abstract at https://projectreporter.nih.gov/project_info_details.cfm?aid=9177473&icde=31387681

This news release can be found online at http://news.rice.edu/2016/10/12/food-fight-eating-may-trigger-bacterial-therapy/

Follow Rice News and Media Relations via Twitter @RiceUNews

Related materials:

Modified bacteria become a multicellular circuit:

http://news.rice.edu/2015/08/27/modified-bacteria-become-a-multicellular-circuit-2/

Bennett Lab: http://biodesign.rice.edu

Josi? Lab: https://www.math.uh.edu/~josic/

Liskin Swint-Kruse: https://experts.kumc.edu/people/305-Liskin_SwintKruse

Wiess School of Natural Sciences: http://naturalsciences.rice.edu

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,910 undergraduates and 2,809 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for happiest students and for lots of race/class interaction by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/RiceUniversityoverview.

Rice University

Related Bacteria Articles:

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Detecting bacteria in space
A new genomic approach provides a glimpse into the diverse bacterial ecosystem on the International Space Station.
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
Drug diversity in bacteria
Bacteria produce a cocktail of various bioactive natural products in order to survive in hostile environments with competing (micro)organisms.
Bacteria walk (a bit) like we do
EPFL biophysicists have been able to directly study the way bacteria move on surfaces, revealing a molecular machinery reminiscent of motor reflexes.
Using bacteria to create a water filter that kills bacteria
Engineers have created a bacteria-filtering membrane using graphene oxide and bacterial nanocellulose.
Probiotics are not always 'good bacteria'
Researchers from the Cockrell School of Engineering were able to shed light on a part of the human body - the digestive system -- where many questions remain unanswered.
More Bacteria News and Bacteria Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#544 Prosperity Without Growth
The societies we live in are organised around growth, objects, and driving forward a constantly expanding economy as benchmarks of success and prosperity. But this growing consumption at all costs is at odds with our understanding of what our planet can support. How do we lower the environmental impact of economic activity? How do we redefine success and prosperity separate from GDP, which politicians and governments have focused on for decades? We speak with ecological economist Tim Jackson, Professor of Sustainable Development at the University of Surrey, Director of the Centre for the Understanding of Sustainable Propserity, and author of...
Now Playing: Radiolab

An Announcement from Radiolab