Nav: Home

Genome engineering paves the way for sickle cell cure

October 12, 2016

A team of physicians and laboratory scientists has taken a key step toward a cure for sickle cell disease, using CRISPR-Cas9 gene editing to fix the mutated gene responsible for the disease in stem cells from the blood of affected patients.

For the first time, they have corrected the mutation in a proportion of stem cells that is high enough to produce a substantial benefit in sickle cell patients.

The researchers from the University of California, Berkeley, UC San Francisco Benioff Children's Hospital Oakland Research Institute (CHORI) and the University of Utah School of Medicine hope to re-infuse patients with the edited stem cells and alleviate symptoms of the disease, which primarily afflicts those of African descent and leads to anemia, painful blood blockages and early death.

"We're very excited about the promise of this technology," said Jacob Corn, a senior author on the study and scientific director of the Innovative Genomics Initiative at UC Berkeley. "There is still a lot of work to be done before this approach might be used in the clinic, but we're hopeful that it will pave the way for new kinds of treatment for patients with sickle cell disease."

In tests in mice, the genetically engineered stem cells stuck around for at least four months after transplantation, an important benchmark to ensure that any potential therapy would be lasting.

"This is an important advance because for the first time we show a level of correction in stem cells that should be sufficient for a clinical benefit in persons with sickle cell anemia," said co-author Mark Walters, a pediatric hematologist and oncologist and director of UCSF Benioff Oakland's Blood and Marrow Transplantation Program.

The results will be reported in the Oct. 12 issue of the online journal Science Translational Medicine.

Sickle cell disease is a recessive genetic disorder caused by a single mutation in both copies of a gene coding for beta-globin, a protein that forms part of the oxygen-carrying molecule hemoglobin. This homozygous defect causes hemoglobin molecules to stick together, deforming red blood cells into a characteristic "sickle" shape. These misshapen cells get stuck in blood vessels, causing blockages, anemia, pain, organ failure and significantly shortened lifespan. Sickle cell disease is particularly prevalent in African Americans and the sub-Saharan African population, affecting hundreds of thousands of people worldwide.

The goal of the multi-institutional team is to develop genome engineering-based methods for correcting the disease-causing mutation in each patient's own stem cells to ensure that new red blood cells are healthy.

The team used CRISPR-Cas9 to correct the disease-causing mutation in hematopoietic stem cells - precursor cells that mature into red blood cells - isolated from whole blood of sickle cell patients. The corrected cells produced healthy hemoglobin, which mutated cells do not make at all.

Future pre-clinical work will require additional optimization, large-scale mouse studies and rigorous safety analysis, the researchers emphasize. Corn and his lab have joined with Walters, an expert in developing curative treatments such as bone marrow transplant and gene therapy for sickle cell disease, to initiate an early-phase clinical trial to test this new treatment within the next five years.

Notably, research groups might be able to apply the approach described in this study to develop treatments for other blood diseases such as β-thalassemia, severe combined immunodeficiency (SCID), chronic granulomatous disease, rare disorders like Wiskott-Aldrich syndrome and Fanconi anemia, and even HIV infection.

"Sickle cell disease is just one of many blood disorders caused by a single mutation in the genome," Corn said. "It's very possible that other researchers and clinicians could use this type of gene editing to explore ways to cure a large number of diseases."

"There is a clear path for developing therapies for certain diseases," said co-senior author Dana Carroll of the University of Utah, who co-developed one of the first genome editing techniques over a decade ago. "It's very gratifying to see gene editing technology being brought to practical applications."

The work is the fruit of the Innovative Genomics Initiative, a joint effort between UC Berkeley and UCSF that aims to correct DNA mutations that underlie human disease using CRISPR-Cas9, a pioneering technology co-developed by scientists at UC Berkeley that has made genome editing easier and more efficient than ever before.

The project also leverages the expertise of physicians and scientists at UCSF Benioff Children's Hospital Oakland, a major center for research and treatment of sickle cell disease, and Carroll's expertise in the field of genome engineering.
-end-
In addition to Corn, Walters and Carroll, other co-authors are Mark DeWitt, Nicolas Bray, Tianjiao Wang and Therese Mitros of UC Berkeley; Wendy Magis, Seok-Jin Heo, Denise Muñoz, Dario Boffelli and David Martin of CHORI; Jennifer Berman of Bio-Rad Laboratories in Pleasanton, California; and Fabrizia Urbinati and Donald Kohn of UCLA.

The research is supported by the National Institutes of Health, the Li Ka Shing Foundation, the Siebel Scholars Fund, the Jordan Family Fund and the Doris Duke Charitable Foundation.

University of California - Berkeley

Related Stem Cells Articles:

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.
First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.
New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.
NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.
Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.
In mice, stem cells seem to work in fighting obesity! What about stem cells in humans?
This release aims to summarize the available literature in regard to the effect of Mesenchymal Stem Cells transplantation on obesity and related comorbidities from the animal model.
TSRI researchers identify gene responsible for mesenchymal stem cells' stem-ness'
Researchers at The Scripps Research Institute recently published a study in the journal Cell Death and Differentiation identifying factors crucial to mesenchymal stem cell differentiation, providing insight into how these cells should be studied for clinical purposes.
More Stem Cells News and Stem Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.