Nav: Home

UVA scientists create novel imaging technique with potential for medical diagnostics

October 12, 2016

A unique new imaging method, called "polarized nuclear imaging" - combining powerful aspects of both magnetic resonance imaging and gamma-ray imaging and developed by two physicists in the University of Virginia's departments of Physics and Radiology ¬¬- has potential for new types of high-resolution medical diagnostics as well as industrial and physics research applications.

"This method makes possible a truly new, absolutely different class of medical diagnostics," said Wilson Miller, who, along with his colleague Gordon Cates, directed the research. "We're combining the advantages of using highly detectable nuclear tracers with the spectral sensitivity and diagnostic power of MRI techniques."

A paper detailing the new imaging modality and related spectroscopic techniques, for which a patent is pending, appeared recently in the journal Nature.

"We have demonstrated the feasibility of the new technique by producing a proof-of-principle image in a manner never before accomplished," Cates said. "In our technique, rather than imaging protons in water, as in MRI, we image a radioactive isotope of xenon that has been polarized using laser techniques."

Cates and his colleagues believe that the technique, once refined, could provide a new, relatively inexpensive way to visualize the gas space of the lungs by having patients inhale a gas containing the isotopes and using PNI to produce an image. The method likewise might work to image targeted areas of the body by injecting isotopes into the bloodstream. Because the technique would use such small quantities of tracer material, when it comes to medical use, the radioactivity would pose little to no danger to people.

Since magnetic resonance imaging has never before been used in combination with radioactive tracers, there is a potential for obtaining new types of diagnostic information that have not been available previously.

MRI, which is widely used for detecting cancer and other abnormalities in the body, is effective because it uses a variety of contrast mechanisms to sort out specific characteristics in an image. And highly sensitive gamma-ray detectors can resolve miniscule amounts of radioactive tracer material, key to homing in on points of particular interest. The new UVA technique uses magnetic resonance to obtain the spatial information, and then collects image information by detecting gamma rays produced by the tracer material - an isotope of xenon Xe-131m, which is a byproduct of Iodine 131 (used for treatment of thyroid problems).

"Unlike MRI, which detects faint radio waves, we detect gamma rays that are emitted from the xenon isotope," Cates said. "Since it is possible to detect a gamma ray from even a single atom, we gain an enormous increase in imaging sensitivity, and dramatically reduce the amount of material needed for performing magnetic-resonance techniques."

As an example, had Cates and Miller filled their imaging subject - in this case a small glass cell shaped like the Chinese symbol for the word "middle" - with water rather than the radioactive isotope, they would have needed about 10 billion times more water molecules than the number of isotope atoms they used to achieve the same image quality. This means that with minute quantities of material, they can achieve detailed imagery using magnetic-resonance techniques that would otherwise be impossible using a radioactive tracer.

The Nature paper includes the first-ever published image using polarized nuclear imaging. The researchers say the quality of that picture far exceeds the first image ever produced using MRI, which was first published in Nature in 1973.

"There was once a first X-ray image, and a first CT-scan image, and first MRI image," Miller said. "We have now produced the first image of a new technology, PNI, which someday may be as much in use as those others."

The authors note that considerable work still needs to be done to demonstrate the utility of the new technique in living subjects, but the unique approach "represents an exciting new technology."

To develop it for practical use, the researchers say they would need to increase the size of the detectors or the amounts of tracer material, and they are seeking alternative radioactive isotopes that would retain their polarization once inside a living subject. There are enough possibilities, however, that they are optimistic, and anticipate the possibility of many applications.

In biological systems, gas imaging already appears to be practical, as do applications involving non-biological systems, such as nuclear physics research.
-end-
Authors of the paper also include Yuan Zheng, a former UVA graduate student who conducted much of the work as part of his dissertation; and UVA physicist William Tobias. The work was funded with an Ivy Foundation Biomedical Innovation Grant.

University of Virginia

Related Magnetic Resonance Imaging Articles:

Fatty liver diagnosis improved with magnetic resonance
Taking tissue samples from the liver to diagnose fatty liver can be replaced in most cases by a painless magnetic resonance investigation.
Manipulating magnetic textures
While the ability to easily control the magnetic properties of small electronic systems is highly desirable for future small electronics and data storage, an effective solution has proven to be extremely elusive.
Magnetic fields at the crossroads
Almost all information that exists in contemporary society is recorded in magnetic media, like hard drive disks.
Three magnetic states for each hole
Nanometer-scale magnetic perforated grids could create new possibilities for Computing.
Perspectives on magnetic reconnection
Article describes latest research on magnetic reconnection.
Magnetic Resonance Imaging to predict the salt content of Iberian ham
The University of Extremadura have developed a non-destructive, innocuous method using magnetic resonance, computer vision and statistical calculus that enables one to quantify the salt content of Iberian ham, and classify it according to the degree of penetration of the salt in the muscle.
Thermal modification of wood and a complex study of its properties by magnetic resonance
Researchers from Institute of Physics of Kazan Federal University, Institute of Perspective Research Tatarstan Academy of Sciences, and Nanoscience Department of Institut Neel conducted an investigation of various thermally treated wood species from the Central European part of Russia by magnetic resonance methods and revealed important changes in wood structure which were not available for observation by other methods.
Stochastic resonance, chaos transfer shown in an optomechanical microresonator
Researchers in the School of Engineering & Applied Science at Washington University in St.
Peacock tail feathers shake at resonance and hold eyespots still during courtship displays
As male peacocks shake their long feathers in courtship, the iridescent eyespots remain nearly stationary and captivate females, according a study published April 27, 2016, in the open-access journal PLOS ONE.
Advanced magnetic resonance imaging technology to track cells in the body
The need to non-invasively see and track cells in living persons is indisputable.

Related Magnetic Resonance Imaging Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#532 A Class Conversation
This week we take a look at the sociology of class. What factors create and impact class? How do we try and study it? How does class play out differently in different countries like the US and the UK? How does it impact the political system? We talk with Daniel Laurison, Assistant Professor of Sociology at Swarthmore College and coauthor of the book "The Class Ceiling: Why it Pays to be Privileged", about class and its impacts on people and our systems.