Nav: Home

Waterloo-led experiment achieves the strongest coupling between light and matter

October 12, 2016

Researchers at the University of Waterloo's Institute for Quantum Computing (IQC) recorded an interaction between light and matter 10 times larger than previously seen. The strength of the interaction between photons and a qubit was so large that it opens the door to a realm of physics and applications unattainable until now.

The results appear in the paper, "Ultrastrong coupling of a single artificial atom to an electromagnetic continuum in the nonperturbative regime," published in Nature Physics.

"We are enabling the investigation of light-matter interactions in a new domain in quantum optics," said Pol Forn-Diaz, a postdoctoral fellow at IQC and lead author of the paper. "The possibilities are exciting because our circuit could potentially act as a quantum simulator to study other interesting quantum systems in nature."

The ultrastrong coupling between photons and qubits may lead to the exploration of new physics related to biological processes, exotic materials such as high-temperature superconductors, and even relativistic physics.

To conduct their experiment, the researchers fabricated aluminum circuits in the University of Waterloo's Quantum NanoFab, and then cooled them in dilution refrigerators to a temperature as low as one per cent of a degree above absolute zero. The circuits become superconducting at these cold temperatures, meaning that they can carry a current without resistance or losing energy. These aluminum circuits, known as superconducting qubits, obey the laws of quantum mechanics and can behave as artificial atoms.

To control the quantum state of a superconducting circuit, the researchers sent photons using microwave pulses into the superconducting circuit and applied a small magnetic field through a coil inside the dilution refrigerator. By measuring the photon transmission, the researchers could define the resonance of the qubit, indicated by the reflection of the photons off the qubit. Usually, the qubit resonance is centered around a very narrow range of frequencies.

"We measured a range of frequencies broader than the qubit frequency itself," said Forn-Diaz. "This means there is a very strong interaction between the qubit and the photons. It is so strong that the qubit is seeing most of the photons that propagate in the circuit, which is a distinctive signature of ultrastrong coupling in an open system."
-end-
This work was carried out in a collaboration between the Waterloo-based experimental groups of Adrian Lupascu and Christopher Wilson. Both are faculty members in the departments Physics and Astronomy and Electrical and Computer Engineering, as well as IQC. The other authors of this work from IQC are Jean-Luc Orgiazzi, Muhammet Ali Yurtulan, PhD students, and Ron Belyansky, undergraduate research assistant. The project was carried out in collaboration with Juan Jose Garcia-Ripoll, PhD, from the Instituto de Física Fundamental in Madrid, Spain, and Borja Peropadre, PhD, from Harvard University.

University of Waterloo

Related Quantum Computing Articles:

New method could enable more stable and scalable quantum computing, Penn physicists report
Researchers from the University of Pennsylvania, in collaboration with Johns Hopkins University and Goucher College, have discovered a new topological material which may enable fault-tolerant quantum computing.
Stanford team brings quantum computing closer to reality with new materials
Quantum computing could outsmart current computing for complex problem solving, but only if scientists figure out how to make it practical.
Computing -- quantum deep
In a first for deep learning, an Oak Ridge National Laboratory-led team is bringing together quantum, high-performance and neuromorphic computing architectures to address complex issues that, if resolved, could clear the way for more flexible, efficient technologies in intelligent computing.
Legacy of brilliant young scientist is a major leap in quantum computing
Researchers from the University of Bristol and Université Libre de Bruxelles have theoretically shown how to write programs for random circuitry in quantum computers.
WSU mathematician breaks down how to defend against quantum computing attacks
WSU mathematician Nathan Hamlin is the author of a new paper that explains how a code he wrote for a doctoral thesis, the Generalized Knapsack Code, could thwart hackers armed with next generation quantum computers.
Protecting quantum computing networks against hacking threats
As we saw during the 2016 US election, protecting traditional computer systems, which use zeros and ones, from hackers is not a perfect science.
Electron-photon small-talk could have big impact on quantum computing
In a step that brings silicon-based quantum computers closer to reality, researchers at Princeton University have built a device in which a single electron can pass its quantum information to a particle of light.
Bridging the advances in AI and quantum computing for drug discovery and longevity research
Insilico Medicine Inc. and YMK Photonics Inc. announced a research collaboration and business cooperation to develop photonics quantum computing and accelerated deep learning techniques for drug discovery, biomarker development and aging research.
New technique for creating NV-doped nanodiamonds may be boost for quantum computing
Researchers at North Carolina State University have developed a new technique for creating NV-doped single-crystal nanodiamonds, only four to eight nanometers wide, which could serve as components in room-temperature quantum computing technologies.
Exploring defects in nanoscale devices for possible quantum computing applications
Researchers at Tokyo Institute of Technology in collaboration with the University of Cambridge have studied the interaction between microwave fields and electronic defect states inside the oxide layer of field-effect transistors at cryogenic temperatures.

Related Quantum Computing Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...