Nav: Home

Genes critical for hearing identified

October 12, 2017

Fifty-two previously unidentified genes that are critical for hearing have been found by testing over 3,000 mouse genes. The newly discovered genes will provide insights into the causes of hearing loss in humans, say scientists from Medical Research Council (MRC) Harwell, who led the analysis by the International Mouse Phenotyping Consortium (IMPC).

The study, published in Nature Communications, tested 3,006 strains of 'knock-out' mice for signs of hearing loss. 'Knock-out' mice have one gene from their genome inactivated, which helps researchers to uncover the functions of that gene. The IMPC aims to generate a 'knock-out' mouse for every gene in the mouse genome.

The hearing thresholds of the knock-out mice were assessed with rising volumes of sound at five different frequencies - mice were considered hearing impaired if they could not hear the quieter sounds for two or more frequencies.

They identified 67 genes that were associated with hearing loss, of which 52 had not been previously linked with hearing loss. The genes identified varied in how they affected hearing - effects ranged from mild to severe hearing loss or resulted in difficulties at lower or higher frequencies.

The knock-out mice tested so far in this study represented only about 15% of mouse genes, so the researchers estimate that if the entire genome is searched there will be at least 450 genes required for hearing function.

In humans, there are over 400 genetic syndromes that include a hearing loss component, however most of the genes underlying hearing loss syndromes are currently unknown.

Professor Steve Brown, senior author on the paper and Director of MRC Harwell, said: "Importantly, the large number of hearing loss genes identified in this study demonstrates that there are many more genes involved in deafness in mouse and human genomes than we had previously realised.

"Our findings identify 52 genes that have previously not been recognised as being critical for hearing. These increase our knowledge of the many genes and molecular mechanisms required for hearing, and also provide a shortlist of new genes to investigate to discover the genetic basis of many human hearing loss syndromes. Testing these genes in people with hearing loss may help to improve diagnosis and counselling of patients.

"The next steps will be to determine the role that each of the proteins encoded by these genes has within the auditory system. Further investigation of these hearing loss mouse models will increase understanding of how the auditory system develops, is maintained, and the pathological processes involved with its decline. In particular, we need to establish whether the genes impact on known hearing loss pathways or if they implicate new processes in the auditory system. A longer term benefit that could arise from studying these models might be the identification of critical cellular functions, which can then be targets for therapies."

Dr Michael Bowl, from MRC Harwell and first author on the paper, said: "Mouse genetics has played an important role in our understanding of the development and functioning of the mammalian auditory system. We anticipate this list of hearing loss genes will grow hugely over the coming years, as the International Mouse Phenotyping Consortium continues to screen new mutants."
-end-


Medical Research Council

Related Hearing Loss Articles:

Veterinarians: Dogs, too, can experience hearing loss
Just like humans, dogs are sometimes born with impaired hearing or experience hearing loss as a result of disease, inflammation, aging or exposure to noise.
Victorian child hearing-loss databank to go global
A unique databank that profiles children with hearing loss will help researchers globally understand why some children adapt and thrive, while others struggle.
Hearing loss, dementia risk in population of Taiwan
A population-based study using data from the National Health Insurance Research Database of Taiwan suggests hearing loss is associated with risk of dementia.
Mice reveal 38 new genes involved in hearing loss
Multiple new genes involved in hearing loss have been revealed in a large study of mouse mutants by researchers from the Wellcome Sanger Institute, King's College London, and colleagues.
New contributor to age-related hearing loss identified
Researchers have discovered a new potential contributor to age-related hearing loss, a finding that could help doctors identify people at risk and better treat the condition.
Exploring the connection between hearing loss and cognitive decline
A new study led by investigators at Brigham and Women's Hospital adds to a growing body of evidence that hearing loss is associated with higher risk of cognitive decline.
Signs of memory problems could be symptoms of hearing loss instead
Older adults concerned about displaying early symptoms of Alzheimer's disease should also consider a hearing check-up, suggest recent findings.
Hearing loss is a risk factor for premature death
A new study links hearing loss with an increased risk for mortality before the age of 75 due to cardiovascular disease.
Study points to possible new therapy for hearing loss
Researchers have taken an important step toward what may become a new approach to restore the hearing loss.
Are portable music players associated with hearing loss in children?
The effect of portable music players on the hearing of children is unclear.
More Hearing Loss News and Hearing Loss Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.