Genes critical for hearing identified

October 12, 2017

Fifty-two previously unidentified genes that are critical for hearing have been found by testing over 3,000 mouse genes. The newly discovered genes will provide insights into the causes of hearing loss in humans, say scientists from Medical Research Council (MRC) Harwell, who led the analysis by the International Mouse Phenotyping Consortium (IMPC).

The study, published in Nature Communications, tested 3,006 strains of 'knock-out' mice for signs of hearing loss. 'Knock-out' mice have one gene from their genome inactivated, which helps researchers to uncover the functions of that gene. The IMPC aims to generate a 'knock-out' mouse for every gene in the mouse genome.

The hearing thresholds of the knock-out mice were assessed with rising volumes of sound at five different frequencies - mice were considered hearing impaired if they could not hear the quieter sounds for two or more frequencies.

They identified 67 genes that were associated with hearing loss, of which 52 had not been previously linked with hearing loss. The genes identified varied in how they affected hearing - effects ranged from mild to severe hearing loss or resulted in difficulties at lower or higher frequencies.

The knock-out mice tested so far in this study represented only about 15% of mouse genes, so the researchers estimate that if the entire genome is searched there will be at least 450 genes required for hearing function.

In humans, there are over 400 genetic syndromes that include a hearing loss component, however most of the genes underlying hearing loss syndromes are currently unknown.

Professor Steve Brown, senior author on the paper and Director of MRC Harwell, said: "Importantly, the large number of hearing loss genes identified in this study demonstrates that there are many more genes involved in deafness in mouse and human genomes than we had previously realised.

"Our findings identify 52 genes that have previously not been recognised as being critical for hearing. These increase our knowledge of the many genes and molecular mechanisms required for hearing, and also provide a shortlist of new genes to investigate to discover the genetic basis of many human hearing loss syndromes. Testing these genes in people with hearing loss may help to improve diagnosis and counselling of patients.

"The next steps will be to determine the role that each of the proteins encoded by these genes has within the auditory system. Further investigation of these hearing loss mouse models will increase understanding of how the auditory system develops, is maintained, and the pathological processes involved with its decline. In particular, we need to establish whether the genes impact on known hearing loss pathways or if they implicate new processes in the auditory system. A longer term benefit that could arise from studying these models might be the identification of critical cellular functions, which can then be targets for therapies."

Dr Michael Bowl, from MRC Harwell and first author on the paper, said: "Mouse genetics has played an important role in our understanding of the development and functioning of the mammalian auditory system. We anticipate this list of hearing loss genes will grow hugely over the coming years, as the International Mouse Phenotyping Consortium continues to screen new mutants."
-end-


Medical Research Council

Related Hearing Loss Articles from Brightsurf:

Proof-of-concept for a new ultra-low-cost hearing aid for age-related hearing loss
A new ultra-affordable and accessible hearing aid made from open-source electronics could soon be available worldwide, according to a study published September 23, 2020 in the open-access journal PLOS ONE by Soham Sinha from the Georgia Institute of Technology, Georgia, US, and colleagues.

Ultra-low-cost hearing aid could address age-related hearing loss worldwide
Using a device that could be built with a dollar's worth of open-source parts and a 3D-printed case, researchers want to help the hundreds of millions of older people worldwide who can't afford existing hearing aids to address their age-related hearing loss.

Understanding the link between hearing loss and dementia
Scientists have developed a new theory as to how hearing loss may cause dementia and believe that tackling this sensory impairment early may help to prevent the disease.

Study uncovers hair cell loss as underlying cause of age-related hearing loss
In a study of human ear tissues, scientists have demonstrated that age-related hearing loss is mainly caused by damage to hair cells.

Hair cell loss causes age-related hearing loss
Age-related hearing loss has more to do with the death of hair cells than the cellular battery powering them wearing out, according to new research in JNeurosci.

How hearing loss in old age affects the brain
If your hearing deteriorates in old age, the risk of dementia and cognitive decline increases.

Examining associations between hearing loss, balance
About 3,800 adults 40 and older in South Korea participating in a national health survey were included in this analysis that examined associations between hearing loss and a test of their ability to retain balance.

Veterinarians: Dogs, too, can experience hearing loss
Just like humans, dogs are sometimes born with impaired hearing or experience hearing loss as a result of disease, inflammation, aging or exposure to noise.

Victorian child hearing-loss databank to go global
A unique databank that profiles children with hearing loss will help researchers globally understand why some children adapt and thrive, while others struggle.

Hearing loss, dementia risk in population of Taiwan
A population-based study using data from the National Health Insurance Research Database of Taiwan suggests hearing loss is associated with risk of dementia.

Read More: Hearing Loss News and Hearing Loss Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.