Nav: Home

Sorting the myriad medicinal molecules of coral reefs

October 12, 2017

Coral reefs harbor an incredible diversity of life, both sea creatures we can see and microbial life that we cannot. These organisms generate an enormous number of molecules as they eat food, photosynthesize, reproduce and ward off infections. Researchers have identified several coral reef-derived molecules as having medicinal properties, such as secosteroids, which are steroid compounds used to treat inflammatory disorders; or the chemical compound bryostatin 1, derived from an invertebrate coral reef denizen known as bryozoans and being evaluated as a treatment for Alzheimer's disease.

Yet many thousands more coral reef molecules with medicinal potential are unknown to science. A study led by San Diego State University biologists describes a promising new method for screening the molecular output of reef life for important chemical properties, which could make it much easier to identify the next generation of coral reef-derived drugs and better understand the diversity of molecules found in the ocean.

"We know what so few of these molecules are and what they do," said the paper's lead author, Aaron Hartmann, a postdoctoral biologist with a dual appointment at SDSU and the Smithsonian Institution. "That's a pretty big roadblock to developing therapeutic drugs derived from them."

Hartmann led the study alongside SDSU biologist Forest Rohwer and colleagues from the University of California, San Diego; the National Oceanic and Atmospheric Administration; the European Molecular Biology Laboratory in Heidelberg, Germany; Imperial College London; the CARMABI Foundation Curaçao; the University of Amsterdam, and Bangor University in Wales. Rohwer co-leads the SDSU Viral Information Institute, a world leader in viral ecology research.

Molecular fingerprints

Working with chemist Pieter Dorrestein's laboratory at the Skaggs School of Pharmacy at UC San Diego, the researchers analyzed tissue samples from corals, algae and fungus collected by Rohwer and others on coral reefs near the remote Line Islands in the central Pacific Ocean.They isolated each organism's molecules and sent them through an instrument called a mass spectrometer that measured each molecule's mass. Next, they broke the molecules apart with a laser and measured the masses of those pieces.

Molecules tend to break apart in predictable ways, so by measuring the mass of these chemical pieces, the researchers were able to come up with a set of "molecular fingerprints"--patterns in the chemical profiles that point to the presence of particular molecules.

However, knowing its chemical fingerprint alone can't tell you what a specific molecule does if it hasn't been described before. The database of known molecules represents only a very small fraction of the molecules that exist, Hartmann explained.

To get around that limitation, the researchers next employed an ingenious trick. They used an algorithm created in Dorrestein's lab to screen these molecular fingerprints, and if the chemical makeups of two unknown molecules were similar, they were flagged as related molecules. Hartmann and Daniel Petras, a postdoctoral chemist at UC San Diego, then explored the chemical reactions of these unknown molecules to get a better idea of how they behave.

This analysis helps answer a long-standing mystery in marine biology: Why do coral reefs have such vast molecular diversity? Comparing even very closely related organisms, the researchers discovered each had different molecular fingerprints, suggesting that these organisms can modify the same molecules differently to suit their particular biological niches.

In other words, even closely related organisms might face different health challenges depending on their geographic location, for example, and therefore tweak their molecules just slightly to better defend themselves. The researchers reported their results today in the Proceedings of the National Academy of Sciences.

Potential therapeutic value

"Molecular relatedness can tell you about the potential chemical reactions exhibited by these unknown molecules," Hartmann said. "That, in turn, can tell you something about their potential therapeutic value."

So instead of screening each individual molecule one-by-one to see if it has medicinal properties, this technique would allow drug discovery scientists to easily hunt for chemical properties exhibited by known drugs. These newly discovered molecules might have benefits over known drugs--more potent, for example, or with fewer side effects.

"Using this method, we're not held back by the fact that our molecular database is pretty sparse," Hartmann said. "If you know what chemical reactions are important, you can then go looking for molecules with those properties."
This research was was funded by the National Science Foundation, the Gordon and Betty Moore Foundation, the National Institutes of Health, the European Union and the German Research Foundation

San Diego State University

Related Coral Reefs Articles:

A brave new world for coral reefs
It is not too late to save coral reefs, but we must act now.
Regular coral larvae supply from neighboring reefs helps degraded reefs recover
For reefs facing huge challenges, more coral larvae doesn't necessarily translate to increased rates of coral recovery on degraded reefs, a new Queensland study has showed.
Potential for Saudi Arabian coral reefs to shine
Careful marine management and stricter fishing laws could enable Saudi Arabia's coral reefs to thrive.
New coral bleaching database to help predict fate of global reefs
A UBC-led research team has developed a new global coral bleaching database that could help scientists predict future bleaching events.
Fish social lives may be key to saving coral reefs
Fish provide a critical service for coral reefs by eating algae that can kill coral and dominate reefs if left unchecked.
Land-based microbes may be invading and harming coral reefs
A new study suggests that coral reefs -- already under existential threat from global warming -- may be undergoing further damage from invading bacteria and fungi coming from land-based sources, such as outfall from sewage treatment plants and coastal inlets.
Dead zones may threaten coral reefs worldwide
Dead zones affect dozens of coral reefs around the world and threaten hundreds more according to a new study by Smithsonian scientists published in Proceedings of the National Academy of Sciences.
Deep reefs unlikely to save shallow coral reefs
Often highlighted as important ecological refuges, deep sections of coral reefs (30-60 m depth) can offer protection from the full force of climate change-related impacts, such as intensifying storms and warm-water bleaching.
Coral reefs grow faster and healthier when parrotfish are abundant
A new study by Smithsonian scientists and colleagues that reveals 3,000 years of change in reefs in the western Caribbean provides long-term, compelling evidence that parrotfish, which eat algae that can smother corals, are vital to coral-reef growth and health.
Rising CO2 threatens coral and people who use reefs
Damage to coral reefs from ocean acidification and sea surface temperature rise will be worst at just the spots where human dependence on reefs is highest, according to a new analysis appearing in PLOS ONE.

Related Coral Reefs Reading:

Coral Reefs: A Journey Through an Aquatic World Full of Wonder
by Jason Chin (Author), Jason Chin (Illustrator)

Coral Reefs
by Gail Gibbons (Author)

Coral Reefs
by Seymour Simon (Author)

Over in the Ocean: In a Coral Reef
by Marianne Berkes (Author), Jeanette Canyon (Illustrator)

Coral Reefs: A Very Short Introduction (Very Short Introductions)
by Charles Sheppard (Author)

National Geographic Readers: Coral Reefs
by Kristin Rattini (Author)

Reef Coral Identification: Florida, Caribbean, Bahamas 3rd Edition (Reef Set (New World))
by Paul Humann (Author), Ned DeLoach (Author)

Science Comics: Coral Reefs: Cities of the Ocean
by Maris Wicks (Author)

Coral Reef
by Donald M. Silver (Author), Patricia Wynne (Author)

The Biology of Coral Reefs (Biology of Habitats Series)
by Charles Sheppard (Author), Simon Davy (Author), Graham Pilling (Author), Nicholas Graham (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Why We Hate
From bullying to hate crimes, cruelty is all around us. So what makes us hate? And is it learned or innate? This hour, TED speakers explore the causes and consequences of hate — and how we can fight it. Guests include reformed white nationalist Christian Picciolini, CNN commentator Sally Kohn, podcast host Dylan Marron, and writer Anand Giridharadas.
Now Playing: Science for the People

#482 Body Builders
This week we explore how science and technology can help us walk when we've lost our legs, see when we've gone blind, explore unfriendly environments, and maybe even make our bodies better, stronger, and faster than ever before. We speak to Adam Piore, author of the book "The Body Builders: Inside the Science of the Engineered Human", about the increasingly amazing ways bioengineering is being used to reverse engineer, rebuild, and augment human beings. And we speak with Ken Thomas, spacesuit engineer and author of the book "The Journey to Moonwalking: The People That Enabled Footprints on the Moon" about...