Nav: Home

Carbon dioxide levels lower than thought during super greenhouse period

October 12, 2017

HANOVER, N.H. - Oct. 12, 2017 - Concentration of carbon dioxide during an intense period of global warmth may have been as low as half the level previously suggested by scientists, according to a new Dartmouth College study.

The study found that carbon dioxide may have been less than 1000 parts per million, or ppm, during the Earth's early Eocene period. This runs counter to thinking that concentration levels were as high as 2000 ppm in the same time frame.

By comparison, current levels of carbon dioxide observed at NOAA's Mauna Loa Observatory are around 400 ppm.

"This research provides important information about the planet's climate past and adds an important chapter to the Earth's history book," said Ying Cui, Obering Postdoctoral Fellow at Dartmouth College.

Climate researchers focus on the early Eocene, a so-called "super greenhouse" period, to better understand how the Earth historically responds to changes in carbon dioxide levels, and to help make better climate projections. Both the Arctic and Antarctic were ice-free in this time period as temperatures averaged about 10 degrees Celsius warmer than present day.

The early Eocene was also characterized by five periods of extreme warmth -- known as hyperthermals -- that occurred between 52-56 million years ago when the Earth warmed an additional 2 C - 8 C above the already higher temperatures.

Although there were no cars or power plants 56 million years ago, the same carbon rich in the isotope carbon-12 was released into the atmosphere. Up until now, researchers have grappled with where that carbon came from, what triggered its release, and to what extent carbon dioxide accounted for warming relative to other greenhouse gases.

Unable to access information on carbon dioxide from ice cores that only date back approximately 800,000 years, the research team used a new method to reconstruct levels of carbon dioxide associated with the temperature spikes within the early Eocene.

The Dartmouth research result was derived by assessing past carbon dioxide concentrations using sediment samples found in terrestrial and deep-sea drilling sites. The ratio of carbon-12 to carbon-13 isotopes in those samples helped the team determine that the most likely source of the carbon came from thawing permafrost during the period studied.

"This changes our understanding of what the concentration of carbon dioxide should be in relationship to global temperature as well as how we should revisit climate models in order to better project future climate change," Cui said.

While the Dartmouth research, published in the journal Earth and Planetary Science Letters, finds that the carbon was most likely released by permafrost thaw, there is still question as to what triggered the warming that caused the release of extra carbon into the atmosphere. Separate research points to the roles of extreme volcanic activity and water vapor during Earth's earlier warming periods.

"The challenge is to reconstruct what the past carbon dioxide concentration is and to utilize these geochemistry proxies the best we can - essentially, how can we best interpret these records using geological archives," said Cui.

Although focusing on a timeframe that is over 50 million years ago, Cui says the research relates directly to efforts to understand the Earth's current warming trend, and to project how human activities and other natural dynamics could impact future warming.

"The geologic past can provide a useful insight into our understanding of current and future environmental change," said Cui. "Policy makers, economists and others who study projections on temperature can utilize this information to see how ecosystems recover after rapid change of climate and use it as lessons for the future."

The research team hopes to use the new technique to broaden understanding of the role of carbon dioxide for a longer stretch of Earth's history.
-end-


Dartmouth College

Related Carbon Articles:

The carbon dioxide loop
Marine biologists quantify the carbon consumption of bacterioplankton to better understand the ocean carbon cycle.
Transforming the carbon economy
A task force commissioned in 2016 by former US Secretary of Energy Ernest Moniz has proposed a framework for evaluating R&D on recycling carbon dioxide and removing large amounts of CO2 from the atmosphere.
Closing the carbon loop
Research at the University of Pittsburgh's Swanson School of Engineering focused on developing a new catalyst that would lead to large-scale implementation of capture and conversion of carbon dioxide (CO2) was recently published in the Royal Society of Chemistry journal Catalysis Science & Technology.
An overlooked source of carbon emissions
Nations that pledged to carry out the Paris climate agreement have moved forward to find practical ways to reduce greenhouse gas emissions, including efforts to ban hydrofluorocarbons and set stricter fuel-efficiency standards.
Enabling direct carbon capture
Researchers have developed a solid material that can capture carbon dioxide from the atmosphere, even at very low concentrations.
Development of a novel carbon nanomaterial 'pot'
A novel, pot-shaped, carbon nanomaterial developed by researchers from Kumamoto University, Japan is several times deeper than any hollow carbon nanostructure previously produced.
Unraveling truly one-dimensional carbon solids
Elemental carbon appears in many different forms, including diamond and graphite.
Carbon leads the way in clean energy
Groundbreaking research at Griffith University is leading the way in clean energy, with the use of carbon as a way to deliver energy using hydrogen.
Consumers care about carbon footprint
How much do consumers care about the carbon footprint of the products they buy?
Assessing carbon capture technology
Carbon capture and storage could be used to mitigate greenhouse gas emissions and thus ameliorate their impact on climate change.

Related Carbon Reading:

Altered Carbon (Takeshi Kovacs)
by Richard K. Morgan (Author)

SOON TO BE A BRAND-NEW SERIES ON NETFLIX

In the twenty-fifth century, humankind has spread throughout the galaxy, monitored by the watchful eye of the U.N. While divisions in race, religion, and class still exist, advances in technology have redefined life itself. Now, assuming one can afford the expensive procedure, a person’s consciousness can be stored in a cortical stack at the base of the brain and easily downloaded into a new body (or “sleeve”) making death nothing more than a minor blip on a screen.

Ex-U.N. envoy Takeshi Kovacs has been killed before, but... View Details


Blood on the River: James Town, 1607
by Elisa Carbone (Author)

Twelve-year-old Samuel Collier is a lowly commoner on the streets of London. So when he becomes the page of Captain John Smith and boards the Susan Constant, bound for the New World, he can’t believe his good fortune. He’s heard that gold washes ashore with every tide. But beginning with the stormy journey and his first contact with the native people, he realizes that the New World is nothing like he imagined. The lush Virginia shore where they establish the colony of James Town is both beautiful and forbidding, and it’s hard to know who’s a friend or foe. As he learns the language of... View Details


Carbon Chemistry
by Ellen Johnston McHenry (Author)

Carbon Chemistry is an introduction to organic chemistry and biochemistry for ages 9-14. It is intended as a follow-up to "The Elements" by the same author, but can be used separately if the student has some basic knowledge of chemistry and the Periodic Table. The first section is a student booklet of eleven chapters, covering topics such as the carbon atom, hydrocarbons, alkanes and alkenes, functional groups, soaps, plastics, rubber, nylon, carbohydrates, fats, proteins, DNA and the carbon cycle. Despite the "heavy" nature of the topics, the text is light, easy-to-read and even humorous in... View Details


Carbon Democracy: Political Power in the Age of Oil
by Timothy Mitchell (Author)

Does oil wealth lead to political poverty? It often looks that way, but Carbon Democracy tells a more complex story. In this magisterial study, Timothy Mitchell rethinks the history of energy, bringing into his grasp as he does so environmental politics, the struggle for democracy, and the place of the Middle East in the modern world. 

With the rise of coal power, the producers who oversaw its production acquired the ability to shut down energy systems, a threat they used to build the first mass democracies. Oil offered the West an alternative, and with it came a new form of... View Details


Student Lab Notebook: 100 Spiral Bound duplicate pages(Package may vary)
by Hayden-McNeil Publishers (Author)

100 Carbonless duplicate pages sequentially numbered.
Copy (bottom page) perforated.
Fully laminated front and back cover.
Back cover folds over to prevent bleed through between sets.
Durable plasticoil spiral binding allows notebook to lie flat.
Cover contains most up-to-date Periodic Table and general lab reference information.
Table of Contents page and How to Keep a Laboratory Notebook guidelines included. View Details


The Carbon Farming Solution: A Global Toolkit of Perennial Crops and Regenerative Agriculture Practices for Climate Change Mitigation and Food Security
by Eric Toensmeier (Author), Dr. Hans Herren (Foreword)

With carbon farming, agriculture ceases to be part of the climate problem and becomes a critical part of the solution

Agriculture is rightly blamed as a major culprit of our climate crisis. But in this groundbreaking new book, Eric Toensmeier argues that agriculture―specifically, the subset of practices known as “carbon farming”―can, and should be, a linchpin of a global climate solutions platform. 

Carbon farming is a suite of agricultural practices and crops that sequester carbon in the soil and in above-ground biomass. Combined with a... View Details


Student Lab Notebook: 100 Top Bound Carbonless Duplicate Sets
by Hayden-McNeil (Author)

100 Carbonless duplicate sets sequentially numbered.
Fully laminated front and back covers permanently bound at top of notebook.
White copy (bottom page) perforated.
Current Periodic Table on back cover folds over to prevent bleed through between sets.
3-hole punched paper.
Features tear-off ruler and general chemistry references.
Table of Contents and How to Keep a Laboratory Notebook guidelines included. View Details


The Case for a Carbon Tax: Getting Past Our Hang-ups to Effective Climate Policy
by Dr. Shi-Ling Hsu PhD JD (Author)

There's a simple, straightforward way to cut carbon emissions and prevent the most disastrous effects of climate change-and we're rejecting it because of irrational political fears. That's the central argument of The Case for a Carbon Tax, a clear-eyed, sophisticated analysis of climate change policy.
 
Shi-Ling Hsu examines the four major approaches to curbing CO2: cap-and-trade; command and control regulation; government subsidies of alternative energy; and carbon taxes. Weighing the economic, social, administrative, and political merits of each, he demonstrates why a tax is... View Details


Lab Notebook 100 Carbonless Pages Spiral Bound (Copy Page Perforated)
by Barbakam (Author)

No need for a carbon sheet between the pages to create a duplicate. These are carbonless self-copying pages (each page has a self duplicating page), 1/4 inch graph paper,all pages consecutively numbered, copy page is perforated for easy tear out, top page stays permanently in the notebook. Both the top page and the copy page are white for better clarity. Record of Contents page to log lab experiment information, Lab Safety Rules page, scientific reference information printed on the bi- fold back cover (ex.most up-to-date periodic table, scientific formulas, conversions, etc). Spiral Bound. View Details


The Post Carbon Reader: Managing the 21st Century's Sustainability Crises
by Richard Heinberg (Editor), Daniel Lerch (Editor)

In the 20th century, cheap and abundant energy brought previously unimaginable advances in health, wealth, and technology, and fed an explosion in population and consumption. But this growth came at an incredible cost. Climate change, peak oil, freshwater depletion, species extinction, and a host of economic and social problems now challenge us as never before. The Post Carbon Reader features articles by some of the world's most provocative thinkers on the key drivers shaping this new century, from renewable energy and urban agriculture to social justice and systems resilience. This... View Details

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Manipulation
We think we're the ones who control what we see, read, think and remember. But is that true? Who decides? And who should decide? This hour, TED speakers reveal just how easily we can be manipulated. Guests include design ethicist Tristan Harris, MSNBC host Ali Velshi, psychologist Elizabeth Loftus, and neuroscientist Steve Ramirez.
Now Playing: Science for the People

#443 Batteries
This week on Science for the People we take a deep dive into modern batteries: how they work now and how they might work in the future. We speak with Gerbrand Ceder from UC Berkeley, about the most commonly used batteries today, how they work, and how they could work better. And we talk with Kathryn Toghill, electrochemist from Lancaster University, about redox flow batteries and how they could help make our power grids more sustainable.