Nav: Home

New technique scours the genome for genes that combat disease

October 12, 2017

Using a modified version of the CRISPR genome-editing system, MIT researchers have developed a new way to screen for genes that protect against specific diseases.

CRISPR is normally used to edit or delete genes from living cells. However, the MIT team adapted it to randomly turn on or off distinct gene sets across large populations of cells, allowing the researchers to identify genes that protect cells from a protein associated with Parkinson's disease.

The new technology, described in the journal Molecular Cell, offers a new way to seek drug targets for many diseases, not just Parkinson's, says Timothy Lu, an MIT associate professor of electrical engineering and computer science and of biological engineering.

"The state of the art right now is targeting two or three genes simultaneously and then looking at the effects, but we think that perhaps the gene sets that need to be modulated to address some of these diseases are actually broader than that," says Lu, who is the senior author of the study.

The paper's lead authors are postdoc Ying-Chou Chen and graduate student Fahim Farzadfard.

Turning genes on or off

The CRISPR genome-editing system consists of a DNA-cutting enzyme called Cas9 and short RNA guide strands that target specific sequences of the genome, telling Cas9 where to make its cuts. Using this process, scientists can make targeted mutations in the genomes of living animals, either deleting genes or inserting new ones.

In the new study, the MIT team deactivated Cas9's cutting ability and engineered the protein so that after binding to a target site, it recruits transcription factors (proteins that are required to turn genes on).

By delivering this version of Cas9 along with the guide RNA strand into single cells, the researchers can target one genetic sequence per cell. Each guide RNA might hit a single gene or multiple genes, depending on the particular guide sequence. This allows researchers to randomly screen the entire genome for genes that affect cell survival.

"What we decided to do was take a completely unbiased approach where instead of targeting individual genes of interest, we would express randomized guides inside of the cell," Lu says. "Using that approach, can we screen for guide RNAs that have unusually strong protective activities in a model of neurodegenerative disease."

The researchers deployed this technology in yeast cells that are genetically engineered to overproduce a protein associated with Parkinson's disease, known as alpha-synuclein. This protein, which forms clumps in the brains of Parkinson's patients, is normally toxic to yeast cells.

Using this screen, the MIT team identified one guide RNA strand that had a very powerful effect, keeping cells alive much more effectively than any of the individual genes that have been previously found to protect this type of yeast cell.

Further genetic screening revealed that many of the genes turned on by this guide RNA strand are chaperone proteins, which help other proteins fold into the correct shape. The researchers hypothesize that these chaperone proteins may assist in the proper folding of alpha synuclein, which could prevent it from forming clumps.

Other genes activated by the guide RNA encode mitochondrial proteins that help cells regulate their energy metabolism, and trafficking proteins that are involved in packaging and transporting other proteins. The researchers are now investigating whether the guide RNA turns on each of these genes individually or whether it activates one or more regulatory genes that then turn the others on.

Protective effects

Once the researchers identified these genes in yeast, they tested the human equivalents in human neurons, grown in a lab dish, that also overproduce alpha synuclein. These human genes were also protective against alpha-synuclein-induced death, suggesting that they could be worth testing as gene therapy treatments for Parkinson's disease, Lu says.

Lu's lab is now using this approach to screen for genes related to other disorders, and the researchers have already identified some genes that appear to protect against certain effects of aging.
-end-
The research was funded by the Ellison Medical Foundation and the National Institutes of Health.

Massachusetts Institute of Technology

Related Genome Articles:

A close look into the barley genome
An international consortium, with the participation of the Helmholtz Zentrum München, Plant Genome and Systems Biology Department (PGSB), has published methodologically significant data on the barley genome.
Barley genome sequenced
Looking for a better beer or single malt Scotch whiskey?
From Genome Research: Pathogen demonstrates genome flexibility in cystic fibrosis
Chronic lung infections can be devastating for patients with cystic fibrosis (CF), and infection by Burkholderia cenocepacia, one of the most common species found in cystic fibrosis patients, is often antibiotic resistant.
A three-dimensional map of the genome
Cells face a daunting task. They have to neatly pack a several meter-long thread of genetic material into a nucleus that measures only five micrometers across.
Rhino genome results
A study by San Diego Zoo Global reveals that the prospects for recovery of the critically endangered northern white rhinoceros -- of which only three individuals remain -- will reside with the genetic resources that have been banked at San Diego Zoo Global's Frozen Zoo®.
Science and legal experts debate future uses and impact of human genome editing in Gender & the Genome
Precise, economical genome editing tools such as CRISPR have made it possible to make targeted changes in genes, which could be applied to human embryos to correct mutations, prevent disease, or alter traits.
Genome: It's all about architecture
How do pathogens such as bacteria or parasites manage to hide from their host's immune system?
Accelerating genome analysis
An international team of scientists, led by researchers from A*STAR's Genome Institute of Singapore and the Bioinformatics Institute, have developed SIFT 4G (SIFT for Genomes) -- a software that can lead to faster genome analysis.
Packaging and unpacking of the genome
Single-cell techniques have been used to investigate histone replacement and chromatin remodeling in developing oocytes.
The astounding genome of the dinoflagellate
Dinoflagellates live free-floating in the ocean or symbiotically with corals, serving up -- or as -- lunch to a host of mollusks, tiny fish and coral species.

Related Genome Reading:

Genome (The Extinction Files Book 2)
by A.G. Riddle (Author)

The thrilling conclusion to THE EXTINCTION FILES is finally here!

* * *

A code hidden in the human genome...
Will reveal the ultimate secret of human existence.
And could hold humanity's only hope of survival.


* * *


In 2003, the first human genome was sequenced. But the secrets it held were never revealed.

The truth was discovered thirty years ago, almost by accident. Dr. Paul Kraus had spent his entire career searching for what he called humanity's lost tribes--human ancestors who had gone extinct. When... View Details


Genome: The Autobiography of a Species in 23 Chapters
by Matt Ridley (Author)

The genome's been mapped.
But what does it mean?

Arguably the most significant scientific discovery of the new century, the mapping of the twenty-three pairs of chromosomes that make up the human genome raises almost as many questions as it answers. Questions that will profoundly impact the way we think about disease, about longevity, and about free will. Questions that will affect the rest of your life.

Genome offers extraordinary insight into the ramifications of this incredible breakthrough. By picking one newly discovered gene from each pair of chromosomes and... View Details


Pandemic (The Extinction Files, Book 1)
by A.G. Riddle (Author)

Read the first novel in The Extinction Files--a two-book series that is now complete!

* * *

From A.G. Riddle, the worldwide bestselling author with OVER 3 MILLION COPIES SOLD, comes a sci-fi thriller readers are calling "addictive" and "an achievement that takes the genre to the next level."

In Africa, a mysterious outbreak spreads quickly. Teams from the CDC and WHO respond, but they soon learn that there is more to the epidemic than they believed. It may be the beginning of a global experiment--an event that will change the human race... View Details


The Gene: An Intimate History
by Siddhartha Mukherjee (Author)

THE #1 NEW YORK TIMES BESTSELLER
A New York Times Notable Book
A Washington Post and Seattle Times Best Book of the Year


From the Pulitzer Prize-winning author of The Emperor of All Maladies—a fascinating history of the gene and “a magisterial account of how human minds have laboriously, ingeniously picked apart what makes us tick” (Elle).

“Dr. Siddhartha Mukherjee dazzled readers with his Pulitzer Prize-winning The Emperor of All Maladies in 2010. That achievement was evidently just a warm-up for... View Details


The Age of Genomes: Tales from the Front Lines of Genetic Medicine
by Steven Monroe Lipkin (Author), Jon Luoma (Author)

A leading geneticist explores what promises to be one of the most transformative advances in health and medicine in history

Almost every week, another exciting headline appears about new advances in the field of genetics. Genetic testing is experiencing the kind of exponential growth once seen with the birth of the Internet, while the plummeting cost of DNA sequencing makes it increasingly accessible for individuals and families.

Steven Lipkin and Jon Luoma posit that today’s genomics is like the last century’s nuclear physics: a powerful tool for good if used... View Details


Adam and the Genome: Reading Scripture after Genetic Science
by Scot McKnight (Author), Dennis R. Venema (Author), Daniel Harrell (Afterword), Tremper Longman III (Afterword)

Genomic science indicates that humans descend not from an individual pair but from a large population. What does this mean for the basic claim of many Christians: that humans descend from Adam and Eve?
Leading evangelical geneticist Dennis Venema and popular New Testament scholar Scot McKnight combine their expertise to offer informed guidance and answers to questions pertaining to evolution, genomic science, and the historical Adam. Some of the questions they explore include:

- Is there credible evidence for evolution?
- Do we descend from a population or are we the offspring of... View Details


Understanding the Human Genome Project (2nd Edition)
by Michael A. Palladino (Author)

Completion of the Human Genome Project is just the tip of the iceberg in our understanding of human genetics. How can information gathered during the Human Genome Project be used? This brief booklet explains in accessible language what readers need to understand about the Human Genome Project, including the background, findings, and social and ethical implications. The author, Michael Palladino, also includes relevant Web resources and exercises for readers. View Details


Neanderthal Man: In Search of Lost Genomes
by Svante Pääbo (Author)

"[T]his book is a vibrant testimonial to what might be the greatest creation of modern humans: the scientific method." --Salon

Neanderthal Man tells the story of geneticist Svante Pääbo's mission to answer this question: what can we learn from the genomes of our closest evolutionary relatives? Beginning with the study of DNA in Egyptian mummies in the early 1980s and culminating in the sequencing of the Neanderthal genome in 2010, Neanderthal Man describes the events, intrigues, failures, and triumphs of these scientifically rich years through the lens of... View Details


The Developing Genome: An Introduction to Behavioral Epigenetics
by David S. Moore (Author)

Why do we grow up to look, act, and feel as we do? Through most of the twentieth century, scientists and laypeople answered this question by referring to two factors alone: our experiences and our genes. But recent discoveries about how genes work have revealed a new way to understand the developmental origins of our characteristics. These discoveries have emerged from the new science of behavioral epigenetics--and just as the whole world has now heard of DNA, "epigenetics" will be a household word in the near future.

Behavioral epigenetics is important because it explains how our... View Details


Genomes 4
by T. A. Brown (Author)

Genomes 4 has been completely revised and updated. It is a thoroughly modern textbook about genomes and how they are investigated. As with Genomes 3, techniques come first, then genome anatomies, followed by genome function, and finally genome evolution.  The genomes of all types of organism are covered: viruses, bacteria, fungi, plants, and animals including humans and other hominids.

Genome sequencing and assembly methods have been thoroughly revised including a survey of four genome projects: human, Neanderthal, giant panda, and barley. Coverage of... View Details

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Going Undercover
Are deception and secrecy categorically wrong? Or can they be a necessary means to an end? This hour, TED speakers share stories of going undercover to explore unknown territory, and find the truth. Guests include poet and activist Theo E.J. Wilson, journalist Jamie Bartlett, counter-terrorism expert Mubin Shaikh, and educator Shabana Basij-Rasikh.
Now Playing: Science for the People

#452 Face Recognition and Identity
This week we deep dive into the science of how we recognize faces and why some of us are better -- or worse -- at this than others. We talk with Brad Duchaine, Professor of Psychology at Dartmouth College, about both super recognizers and face blindness. And we speak with Matteo Martini, Psychology Lecturer at the University of East London, about a study looking at twins who have difficulty telling which one of them a photo was of. Charity Links: Union of Concerned Scientists Evidence For Democracy Sense About Science American Association for the Advancement of Science Association for Women...