Nav: Home

An evolving sticky situation

October 12, 2017

EAST LANSING, Mich. - While many animals try to avoid sticky situations, lizards evolved to seek them out.

Travis Hagey, Michigan State University evolutionary biologist, shows how different groups of lizards - geckos and anoles - took two completely different evolutionary paths to developing the beneficial trait of sticky toe pads.

In a paper published in the journal Evolution, Hagey showed that anoles seemed to commit to a single type of toe pad, one that generates lots of friction. As a group, they were able to develop sticky toe pads early. Geckos, meanwhile, opted for an evolutionary "drunken stumble," and seemingly didn't commit to a single approach, instead evolving toe pads that generate plenty of friction in some species and others that excel at sticking directly to a surface.

The stumbling theory, formally known as the Brownian motion model, best explains gecko evolution. Different groups of geckos sought various approaches and jumped at adaptive solutions. They achieved the beneficial traits by pursuing different ways, moving forward some eras and backward during others, Hagey said.

Did anoles have but one option? Is there merely one evolutionary path to become the best tree-climbing lizard? Were geckos more laissez faire with evolution?

"We're trying to explain how evolution works and how predictable it is," said Hagey, who's part of MSU's BEACON Center for Evolution in Action. "Good science answers one question while producing more questions. Anoles and geckos are two different large groups of lizards. They live on different continents, and evolutionarily, they're separated by 250 million years of time. So even though they have some of the same traits, you can't assume that they were developed the same way."

Evolution is a tinkerer, he added. Hagey likens it to a person who lives on a dirt road and decides to build a bicycle.

"But they can use only the parts they can get their hands on and make modifications and repairs until they get a bike they like," Hagey said. "Two different people might build two different bikes that both work well on dirt roads, but the process and steps they went though will probably be different. The same is true for geckos and anoles. They both evolved sticky toes but got there different ways."

Hagey's research team included scientists from the University of Idaho, Cambridge, the University of London, and Lewis and Clark College.

Leg length PLOSONE paper

In a related paper in PLOSONE, Hagey chose to focus on limb length. Geckos and anoles live on trees and climb vertical surfaces. They have to deal with the same mechanical aspects, but did they take different paths to gain those advantages? Did they evolve traits that emphasized sprint speed over balance or vice versa?

"Studying sticky toe pads and limb length help scientists understand how and why animals are shaped the way they're shaped and the mechanics of their movement," Hagey said. "You'd think there would be only one good way to climb a tree or one good way to swim, but there are many."

For both studies, Hagey traveled to exotic locales in the Dominican Republic, Australia and Thailand. Visiting a breeder in Oklahoma allowed him to observe 15 lizard species from five continents. Overall, his research reviewed 30 species of geckos and 20 species of anoles.

The study showed that geckos generally have shorter legs than anoles. The scientists are unsure why this is the case, but once they factored in the length difference they made an interesting observation.

Lizards living on bushes, regardless of geckos or anoles, have long tails, striped backs and long legs. Those living on small branches in the canopy of a forest tend to be brown, with short tails, long snouts and short legs. These traits were consistent despite being separated by oceans or hemispheres.

"Even though we were able to find some cool similarities, we really don't know why, yet," Hagey said. "Maybe they're all adapting to be the best bush lizards or the best tree-climbing lizards and all heading toward the same evolutionary solutions."
Researchers from James Cook University (Australia) and the University of Idaho contributed to this study.

The research was supported by the National Science Foundation and National Geographic.

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

For MSU news on the Web, go to MSUToday. Follow MSU News on Twitter at

Michigan State University

Related Evolution Articles:

Prebiotic evolution: Hairpins help each other out
The evolution of cells and organisms is thought to have been preceded by a phase in which informational molecules like DNA could be replicated selectively.
How to be a winner in the game of evolution
A new study by University of Arizona biologists helps explain why different groups of animals differ dramatically in their number of species, and how this is related to differences in their body forms and ways of life.
The galloping evolution in seahorses
A genome project, comprising six evolutionary biologists from Professor Axel Meyer's research team from Konstanz and researchers from China and Singapore, sequenced and analyzed the genome of the tiger tail seahorse.
Fast evolution affects everyone, everywhere
Rapid evolution of other species happens all around us all the time -- and many of the most extreme examples are associated with human influences.
Landscape evolution and hazards
Landscapes are formed by a combination of uplift and erosion.
New insight into enzyme evolution
How enzymes -- the biological proteins that act as catalysts and help complex reactions occur -- are 'tuned' to work at a particular temperature is described in new research from groups in New Zealand and the UK, including the University of Bristol.
The evolution of Dark-fly
On Nov. 11, 1954, Syuiti Mori turned out the lights on a small group of fruit flies.
A look into the evolution of the eye
A team of researchers, among them a zoologist from the University of Cologne, has succeeded in reconstructing a 160 million year old compound eye of a fossil crustacean found in southeastern France visible.
Is evolution more intelligent than we thought?
Evolution may be more intelligent than we thought, according to a University of Southampton professor.
The evolution of antievolution policies
Organized opposition to the teaching of evolution in public schoolsin the United States began in the 1920s, leading to the famous Scopes Monkey trial.

Related Evolution Reading:

Evolution: Becoming A Criminal
by Chas Allen (Author)

Evolution: The Human Story, 2nd Edition
by Dr. Alice Roberts (Author)

Evolutions: Fifteen Myths That Explain Our World
by Oren Harman (Author)

Why Evolution Is True
by Jerry A. Coyne (Author)

Evolution: The Human Story
by DK Publishing (Author)

Evolution: The Cutting-Edge Guide to Breaking Down Mental Walls and Building the Body You've Always Wanted
by Joe Manganiello (Author)

Evolution: A Visual Record
by Robert Clark (Author)

Evolution: Still a Theory in Crisis
by Michael Denton (Author)

Evolution: How We and All Living Things Came to Be
by Daniel Loxton (Author), Daniel Loxton (Illustrator)

Evolution 2.0: Breaking the Deadlock Between Darwin and Design
by Perry Marshall (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Why We Hate
From bullying to hate crimes, cruelty is all around us. So what makes us hate? And is it learned or innate? This hour, TED speakers explore the causes and consequences of hate — and how we can fight it. Guests include reformed white nationalist Christian Picciolini, CNN commentator Sally Kohn, podcast host Dylan Marron, and writer Anand Giridharadas.
Now Playing: Science for the People

#482 Body Builders
This week we explore how science and technology can help us walk when we've lost our legs, see when we've gone blind, explore unfriendly environments, and maybe even make our bodies better, stronger, and faster than ever before. We speak to Adam Piore, author of the book "The Body Builders: Inside the Science of the Engineered Human", about the increasingly amazing ways bioengineering is being used to reverse engineer, rebuild, and augment human beings. And we speak with Ken Thomas, spacesuit engineer and author of the book "The Journey to Moonwalking: The People That Enabled Footprints on the Moon" about...