Nav: Home

Researchers find mechanism involved in novel drug design with potential to treat tuberculosis

October 12, 2017

A team of researchers from Instituto de Medicina Molecular (iMM) Lisboa successfully used a pioneer method to chemically modify a protein's components with potential medical applications and an impact in the fight against tuberculosis.

To design novel drugs it is essential to understand the molecular mechanisms that make up proteins of pathogenic bacteria. The team, led by Gonçalo Bernardes, used an innovative methodology that allows protein alteration in their native state along with organic chemistry, biological computation, biophysics and biochemistry techniques to modify proteins involved in infectious diseases.

Researchers were able to identify a novel molecular mechanism that works as a shield in a family of proteins that are present in pathogenic bacteria, named phosphates. In particular, the team observed the presence of a structural water molecule in a specific area that protects the protein of being inactivated by oxidative processes.

These results may impact the fields of medical chemistry and molecular medicine because they reveal a novel defence mechanism used by these pathogenic proteins which may prove essential in the way we think about novel drug design, particularly to increase specificity, potency and efficacy of future clinical tests.
-end-


Instituto de Medicina Molecular

Related Proteins Articles:

Discovering, counting, cataloguing proteins
Scientists describe a well-defined mitochondrial proteome in baker's yeast.
Interrogating proteins
Scientists from the University of Bristol have designed a new protein structure, and are using it to understand how protein structures are stabilized.
Ancient proteins studied in detail
How did protein interactions arise and how have they developed?
What can we learn from dinosaur proteins?
Researchers recently confirmed it is possible to extract proteins from 80-million-year-old dinosaur bones.
Relocation of proteins with a new nanobody tool
Researchers at the Biozentrum of the University of Basel have developed a new method by which proteins can be transported to a new location in a cell.
Proteins that can take the heat
Ancient proteins may offer clues on how to engineer proteins that can withstand the high temperatures required in industrial applications, according to new research published in the Proceedings of the National Academy of Sciences.
Designer proteins fold DNA
Florian Praetorius and Professor Hendrik Dietz of the Technical University of Munich have developed a new method that can be used to construct custom hybrid structures using DNA and proteins.
The proteins that domesticated our genomes
EPFL scientists have carried out a genomic and evolutionary study of a large and enigmatic family of human proteins, to demonstrate that it is responsible for harnessing the millions of transposable elements in the human genome.
Rare proteins collapse earlier
Some organisms are able to survive in hot springs, while others can only live at mild temperatures because their proteins aren't able to withstand such extreme heat.
How proteins reshape cell membranes
Small 'bubbles' frequently form on membranes of cells and are taken up into their interior.

Related Proteins Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".