Nav: Home

Autism often associated with multiple new mutations

October 12, 2017

Most cases of autism appear to be associated with the appearance of new mutations that are not inherited from the child's parents, researchers from the University of Washington School of Medicine report.

These new mutations occur in regions of the genome that contain genes, which code for proteins, as well as in "non-coding" regions, which do not contain genes but which regulate gene activity, the researchers found.

"We are excited by these early findings because they suggest that multiple new mutations in a child, both coding and non-coding, are important to understanding the genetics of the disease," said Evan Eichler, UW professor of genome sciences, who led the team that conducted the study.

The first author of the study, which was published online in the journal Cell, was Tychele Turner, a postdoctoral fellow in the Eichler Lab.

Although some forms of autism appear to run in families, most cases occur in families with no history of the disorder. This form of autism, called simplex autism, is thought to occur from new mutations that first appear when the the parents' sperm or eggs form.

These newly formed, or de novo, mutations are found in the affected child's genome, but not in either parent's genome. They are unlikely to occur in the affected child's siblings.

In the new study, researchers used a huge genomic database created by the Simons Foundation Autism Research Initiative. The scientists compared the genomes of 516 individuals who had simplex autism with the genomes of their parents and one sibling who was not affected by the disorder.

By comparing these family members, researchers hoped to identify new mutations that were more likely to appear in the affected child and more likely to be associated with an increased risk of developing autism.

Most previous studies had limited such comparisons to the small portion of the genome that includes the instructions for the synthesis of proteins. This coding region contains genes. The new study compared almost the entire genomes of the study participants, including the regions that do not include genes.

Although these "non-coding" regions do not include instructions for making proteins, they play an important role in regulating protein production by turning genes on and off and dialing their activity up or down.

The researchers observed that mutations that tended to appear in non-coding regions of the genomes occurred in areas known to influence gene activity in neurons located deep in the brain in a structure called the striatum.

This part of the brain is thought to play a role in some of autism behaviors. Typically, the striatum coordinates planning, reward perception, motivation and other cognitive functions.

Mutations were also located in areas of the genome that influence genes for embryonic stem cell development and fetal brain development.

The findings suggest that relatively few of the new mutations in genes linked to autism risk were needed to increase the odds of having the disorder. The risk rose with as few as two of these newly appearing mutations.

Eichler said that, to nail down the autism risk role played by mutations in the regulatory, non-coding regions of the genome, it will be necessary to repeat the study with many more sets of parents and their children.
-end-
The study's collaborators included researchers from the New York Genome Center, Lawrence Berkeley National Laboratory, University of California, Davis, Rockefeller University, and the U.S. Department of Energy Joint Genome Institute.

Eichler is a Howard Hughes Medical Institute investigator.

University of Washington Health Sciences/UW Medicine

Related Autism Articles:

Brain protein mutation from child with autism causes autism-like behavioral change in mice
A de novo gene mutation that encodes a brain protein in a child with autism has been placed into the brains of mice.
Autism and theory of mind
Theory of mind, or the ability to represent other people's minds as distinct from one's own, can be difficult for people with autism.
Potential biomarker for autism
A study of young children with autism spectrum disorder published in JNeurosci reveals altered brain waves compared to typically developing children during a motor control task.
Autism and the smell of fear
Autism typically involves the inability to read social cues. We most often associate this with visual difficulty in interpreting facial expression, but new research at the Weizmann Institute of Science suggests that the sense of smell may also play a central role in autism.
Autism often associated with multiple new mutations
Most autism cases are in families with no previous history of the disorder.
State laws requiring autism coverage by private insurers led to increases in autism care
A new study led by researchers at the Johns Hopkins Bloomberg School of Public Health has found that the enactment of state laws mandating coverage of autism spectrum disorder (ASD) was followed by sizable increases in insurer-covered ASD care and associated spending.
Autism's gender patterns
Having one child with autism is a well-known risk factor for having another one with the same disorder, but whether and how a sibling's gender influences this risk has remained largely unknown.
Pinpointing the origins of autism
The origins of autism remain mysterious. What areas of the brain are involved, and when do the first signs appear?
Genes, ozone, and autism
Exposure to ozone in the environment puts individuals with high levels of genetic variation at an even higher risk for developing autism than would be expected just by adding the two risk factors together, a new analysis shows.
New form of autism found
Autism spectrum disorders (ASD) affect around one percent of the world's population and are characterized by a range of difficulties in social interaction and communication.
More Autism News and Autism Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.