Nav: Home

Widespread errors in 'proofreading' cause inherited blindness

October 12, 2018

Mistakes in "proofreading" the genetic code of retinal cells is the cause of a form of inherited blindness, retinitis pigmentosa (RP) caused by mutations in splicing factors.

This new understanding of the disease process, published today in Nature Communications, is leading to the development of a gene therapy for RP caused by splicing factor defects.

The work, led by Professor Majlinda Lako at Newcastle University, investigated how a common form of inherited blindness, retinitis pigmentosa, is caused by genetic defects in splicing factors.

Splicing factors are important protein components of the gene proofreading or "splicing" mechanism that is found in all cells. Some sections of our DNA, known as introns, are removed or spliced out by the cell during protein construction, so that only the final intelligible genetic code remains. This is because the introns do not actually provide any meaningful instructions for making proteins. Variations in splicing can cause very different consequences on the formation or function of cells, including retinal cells.

The scientists were able to create a "retina in a dish" using stem cells derived from the skin samples donated by retinitis pigmentosa patients at the University of Leeds.

This cell model enabled the team to compare retinal cells to others in the body. These cells are normally very hard to obtain as they would previously have had to be donated from the retina, usually after death.

Using this model, the researchers have shown that defects in splicing factors cause defective proofreading of components of the editing machinery itself. This counter-intuitive effect results in a "vicious cycle" of disruptive misinterpretation of the genetic code. The formation and functions of a special type of retinal cells, retinal pigment epithelial (RPE) cells, are the most severely affected. These cells are essential for supporting and nourishing photoreceptors (rod and cone cells), so when they go wrong the light-processing function of the retina breaks down, resulting in sight loss.

The study shows, for the first time, how genetic defects in splicing factors cause variations in the proofreading of retinal genes, leading to defects in retinal cell function and their eventual degeneration in retinitis pigmentosa.

Professor Lako's team went on to show that CRISPR-Cas9 gene editing could be used to correct the genetic defects in a particular splicing factor. This also corrected the function of the RPE and rod and cone cells in their laboratory model, indicating a potential pathway to future treatments.

Professor Lako said: "This research gives us much deeper and broader insights into how splicing factors cause retinitis pigmentosa, enabling the next step in our research - the design of gene therapies for future treatments."

Co-author Professor Colin A. Johnson, from the University of Leeds, said: "We've been puzzled by the genetics behind these unique forms of inherited blindness for over 20 years. Our study is the first to really make sense of how these conditions develop, and I'm now very hopeful that this will lead to clinical trials for new treatments within five years."

Tina Houlihan, Chief Executive, RP Fighting Blindness said: "We are delighted that our support has enabled the group to publish these important findings in Nature Communications. We look forward to seeing the development of this work through our newly awarded grant, which will allow Professor Lako and the team to further understand the mechanisms underlying this type of RP and progress towards the targeted treatment strategies our community needs."

Professor Mike Cheetham from UCL, scientific advisor for RP Fighting Blindness commented: "It has been a conundrum why genetic changes in ubiquitous and highly conserved 'splicing factors' cause RP. This exciting work is a major step towards understanding how these changes in splicing factors lead to RP, and was only possible by using stem cells made from affected individuals and turning them into a 'retina in a dish'. There is still much to learn about why splicing factors are so necessary for the retina to function and how we might repair, or treat, this in individuals with this type of RP, but this work will focus research on the right models and pathways for future development."
-end-
The research was led by four teams in collaboration with 38 researchers worldwide: Prof. Majlinda Lako (Newcastle University), Prof. Colin A. Johnson (University of Leeds), Dr. Sushma Nagaraja-Grellscheid (University of Durham) and Prof. Reinhard Luehrmann and Dr. Sina Mozaffari-Jovin at the Max Planck Institute in Gottingen, Germany.

RP with splicing factor defects affects around 23,000 people in the UK and up to 2.5 million worldwide.

Newcastle University

Related Gene Therapy Articles:

Non-viral gene therapy to speed up cancer research
A new treatment method promises to speed up gene therapy research and could bring new, patient friendly cancer treatments to market faster.
Gene therapy promotes nerve regeneration
Researchers from the Netherlands Institute for Neuroscience and the Leiden University Medical Center have shown that treatment using gene therapy leads to a faster recovery after nerve damage.
Gene therapy for blood disorders
Delivering gene-regulating material to cells that live deep in our bone marrow and direct the formation of blood cells.
Realizing the potential of gene therapy for neurological disorders
Promising findings from preclinical animal studies show the potential of gene therapy for treating incurable neurological disorders.
Gene therapy vectors carrying the telomerase gene do not increase the risk of cancer
Researchers from the Spanish National Cancer Research Centre (CNIO) have shown in a new study that the gene therapy with telomerase that they have developed, and which has proven to be effective in mice against diseases caused by excessive telomere shortening and ageing, does not cause cancer or increase the risk of developing it, even in a cancer-prone setting.
Study advances gene therapy for glaucoma
In a study published today in the scientific journal Investigative Ophthalmology and Visual Science, Kaufman and Curtis Brandt, a fellow professor of ophthalmology and visual sciences at UW-Madison, showed an improved tactic for delivering new genes into the eye's fluid drain, called the trabecular meshwork.
Hearing is believing in gene therapy's promise
In a new Nature paper, a Rice University professor outlines a strategy that uses gene editing to slow the progression of a genetic hearing disease.
Routing gene therapy directly into the brain
The technique, which could be used to transplant donor-matched hematopoietic stem cells (HSCs) or a patient's own genetically-engineered HSCs into the brain, was reported in Science Advances today by researchers from the Dana-Farber/Boston Children's Cancer and Blood Disorders Center and the San Raffaele Telethon Institute for Gene Therapy.
Boy is given new skin thanks to gene therapy
A medical team at the Ruhr-Universität Bochum's burn unit and the Center for Regenerative Medicine at the University of Modena (Italy) were the first ever to successfully treat a child suffering from extensive skin damage using transplants derived from genetically modified stem cells.
Mysterious gene transcripts after cancer therapy
Drugs that are used in cancer therapy to erase epigenetic alterations in cancer cells simultaneously promote the production of countless mysterious gene transcripts, scientists from the German Cancer Research Center now report in Nature Genetics.
More Gene Therapy News and Gene Therapy Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.