Nav: Home

A new way to create molecules for drug development

October 12, 2018

COLUMBUS, Ohio - Chemists at The Ohio State University have developed a new and improved way to generate molecules that can enable the design of new types of synthetic drugs.

Researchers say this new method of forming reactive intermediates called ketyl radicals offers scientists a way to use catalysts to convert simple molecules into complex structures in one chemical reaction. This is done in a less harsh, more sustainable and waste-free manner.

"The previous strategy for creating ketyl radicals is about a century old. We have a found a complementary way to access ketyl radicals using LED lights for the synthesis of complex, drug-like molecules," said David Nagib, co-author of the new study and assistant professor of chemistry and biochemistry at Ohio State. The study was published Oct. 12 in the journal Science.

The story starts with carbonyls, compounds that function as one of the most common building blocks in creating potential new drugs. Unlike classic carbonyl chemistry taught in introductory organic textbooks, when carbonyls are converted to their "radical" form, they become much more reactive. These radicals, containing an unpaired electron desperately seeking its partner, enable researchers to form new bonds, in order to create complex, drug-like products.

Until now, ketyl radical formation has required strong, harsh substances called reductants, like sodium or samarium, to act as catalysts. These reductants can be toxic, expensive and incompatible with creating medicines, Nagib said.

In this study, the researchers found a way to use manganese as a catalyst that could be activated with a simple LED light.

"Manganese is very cheap and abundant, which makes it an excellent catalyst," he said. "Also, it allows us to access radicals by a complementary atom-transfer mechanism, rather than the classic electron-transfer mechanism."

Not only is manganese cheaper and more abundant, it actually is more selective in creating products with defined geometries, so they can fit into drug targets, the study found. The process is less wasteful, as well, recycling the iodine atom used to make the radicals by including it in the more functional products.

This new method to generate ketyl radicals enables researchers to create more versatile and complex structures that could be useful in generating new medicines, Nagib said.

Co-authors of the study, all from Nagib's lab at Ohio State, are Lu Wang, Jeremy Lear, Sean Rafferty and Stacy Fosu. Wang, a lead scientist on this project, recently completed her postdoctoral fellowship and now works for Merck, a major pharmaceutical company.

This research was funded by the National Science Foundation and the National Institutes of Health.
-end-
Contact: David Nagib, Nagib.1@osu.edu

Ohio State University

Related Chemistry Articles:

Better chemistry through tiny antennae
A research team at The University of Tokyo has developed a new method for actively controlling the breaking of chemical bonds by shining infrared lasers on tiny antennae.
Chemistry in motion
For the first time, researchers have managed to view previously inaccessible details of certain chemical processes.
Researchers enrich silver chemistry
Researchers from Russia and Saudi Arabia have proposed an efficient method for obtaining fundamental data necessary for understanding chemical and physical processes involving substances in the gaseous state.
The chemistry behind kibble (video)
Have you ever thought about how strange it is that dogs eat these dry, weird-smelling bits of food for their entire lives and never get sick of them?
Top 10 chemistry start-ups
Starting a new chemistry-based company is one part discovery, one part risk.
Biomimetic chemistry: Carbohydrate capture
LMU chemists have designed and synthesized a helical molecule that specifically recognizes and binds to a disaccharide consisting of two five-carbon sugar units.
Reining in soil's nitrogen chemistry
The compound urea is currently the most popular nitrogen soil fertilizer.
Taking a closer look at 'electrifying' chemistry
With the increasing availability of electrical energy from renewable sources, it will be possible in the future to drive many chemical processes using an electric current.
The changing chemistry of the Amazonian atmosphere
Researchers have been debating whether nitrogen oxides (NOx) can affect levels of OH radicals in a pristine atmosphere but quantifying that relationship has been difficult.
The chemistry of Hollywood bloodbaths (video)
Fake blood is a staple of the Halloween horror film experience, but there's no one recipe to suit every filmmaker's needs.
More Chemistry News and Chemistry Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.