Nav: Home

An RNA key that unlocks innate immunity

October 12, 2018

RNA has long been the neglected middle child of biomolecules, the go-between between DNA, which encodes the cell's instructions, and proteins, which carry them out. Increasingly, though, researchers are recognizing RNA as a versatile molecule with, possibly, as many functions as proteins have. New research from Emory University, published in the Journal of Biological Chemistry, shows that one such versatile RNA molecule may be a key player in human cells' frontline defenses against viruses.

Graeme Conn, the biochemistry professor who oversaw the work, studies how RNA is involved in the body's responses to infections. When a human cell senses a virus, it activates a signaling pathway: a protein called OAS gets turned on and produces a signaling molecule, which in turn activates another protein that both directly defends against the virus as well as activating other parts of the cell's innate immune system.

As it turns out, human RNA might play an important role in this pathway, specifically a human RNA molecule called nc886. The "nc" stands for "noncoding," which means this RNA molecule is not carrying instructions for building a protein. It's doing something all on its own.

What it's doing, the new paper shows, is turning on OAS, thus setting off the chain of events that destroys viruses.

"We saw that (nc886) wasn't just an activator of this pathway, but a very potent activator," said Brenda Calderon, who carried out the research as a graduate student in Conn's lab.

The nc886 molecule can adopt two different shapes, and one of them is much better at activating OAS than the other. This is another way in which this RNA molecule acts like a protein: its function depends strongly on its 3-D shape and structure. Although nc886 is present in all human cells, it's unknown whether the relative abundance of the immune-activating and less-active form might change in response to infection.

"We'll be asking these questions about infected and uninfected cells," Conn said. "How does the level of the RNA change? How do the levels of these two (forms) change?"

Getting deep into the molecular details of cells' first responses to viruses opens the door to new kinds of treatments. Calderon speculates that understanding the factors that activate this pathway may enable researchers to someday manipulate it to strengthen antiviral defenses.

"Such approaches have the potential to underpin novel, broad antiviral therapies (that don't rely) on acquired immunity, and therefore are suitable for infants, elderly, and immunocompromised patients," Calderon said.
-end-
The study was funded by the National Institutes of Health and Emory University.

About the Journal of Biological Chemistry

JBC is a weekly peer-reviewed scientific journal that publishes research "motivated by biology, enabled by chemistry" across all areas of biochemistry and molecular biology. The read the latest research in JBC, visit http://www.jbc.org/.

About the American Society for Biochemistry and Molecular Biology

The ASBMB is a nonprofit scientific and educational organization with more than 12,000 members worldwide. Most members teach and conduct research at colleges and universities. Others conduct research in various government laboratories, at nonprofit research institutions and in industry. The Society's student members attend undergraduate or graduate institutions. For more information about ASBMB, visit http://www.asbmb.org.

American Society for Biochemistry and Molecular Biology

Related Protein Articles:

A protein that controls inflammation
A study by the research team of Prof. Geert van Loo (VIB-UGent Center for Inflammation Research) has unraveled a critical molecular mechanism behind autoimmune and inflammatory diseases such as rheumatoid arthritis, Crohn's disease, and psoriasis.
Resurrecting ancient protein partners reveals origin of protein regulation
After reconstructing the ancient forms of two cellular proteins, scientists discovered the earliest known instance of a complex form of protein regulation.
Sensing protein wellbeing
The folding state of the proteins in live cells often reflect the cell's general health.
Protein injections in medicine
One day, medical compounds could be introduced into cells with the help of bacterial toxins.
Discovery of an unusual protein
Scientists from Bremen discover an unusual protein playing a significant role in the Earth's nitrogen cycle.
Protein aggregation: Protein assemblies relevant not only for neurodegenerative disease
Amyloid fibrils play a crucial role in neurodegenerative illnesses. Scientists from Heinrich Heine University Düsseldorf (HHU) and Forschungszentrum Jülich have now been able to use cryo-electron microscopy (cryo-EM) to decode the spatial structure of the fibrils that are formed from PI3K SH3 domains - an important model system for research.
Old protein, new tricks: UMD connects a protein to antibody immunity for the first time
How can a protein be a major contributor in the development of birth defects, and also hold the potential to provide symptom relief from autoimmune diseases like lupus?
Infection-fighting protein also senses protein misfolding in non-infected cells
Researchers at the University of Toronto have uncovered an immune mechanism by which host cells combat bacterial infection, and at the same time found that a protein crucial to that process can sense and respond to misfolded proteins in all mammalian cells.
Quorn protein builds muscle better than milk protein
A study from the University of Exeter has found that mycoprotein, the protein-rich food source that is unique to Quorn products, stimulates post-exercise muscle building to a greater extent than milk protein.
More than a protein factory
Researchers from the Stowers Institute for Medical Research have discovered a new function of ribosomes in human cells that may show the protein-making particle's role in destroying healthy mRNAs, the messages that decode DNA into protein.
More Protein News and Protein Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.