Age does not contribute to COVID-19 susceptibility

October 12, 2020

Scientists have estimated that the age of an individual does not indicate how likely they are to be infected by SARS-CoV-2. However, development of symptoms, progression of the disease, and mortality are age-dependent.

There have been a large number of deaths due to the ongoing COVID-19 pandemic, and it has been shown that elderly individuals disproportionately develop severe symptoms and show higher mortality.

A team of scientists, including Associate Professor Ryosuke Omori from the Research Center for Zoonoses Control at Hokkaido University, have modeled available data from Japan, Spain and Italy to show that susceptibility to COVID-19 is independent of age, while occurrence of symptomatic COVID-19, severity and mortality is likely dependent on age. Their results were published in the journal Scientific Reports on October 6, 2020.

Causes of mortality in elderly individuals may be due to two factors: how likely they are to be infected due to their advanced age (age-dependent susceptibility), which is reflected in the number of cases; and, how likely they will be affected by a severe form of the disease due to their advanced age (age-dependent severity), which is reflected in the mortality rate. These factors are not fully understood for COVID-19.

The scientists chose to analyse data from Italy, Spain and Japan to determine if any relationship between age, susceptibility and severity. These three countries were chosen as they have well recorded, publicly available data. As of May 2020, the mortality rate (number of deaths per 100,000) was 382.3 for Italy, 507.2 for Spain and 13.2 for Japan. However, despite the wide disparity in mortality rates, the age distribution of mortality (the proportional number of deaths per age group) was similar for these countries.

The scientists developed a mathematical model to calculate susceptibility in each age group under different conditions. They also factored in the estimated human-to-human contact level in each age group, as well as varying restriction levels for outside-home activities in the three countries.

The model showed that the susceptibility has to be unrealistically different between age groups if they assume age does not influence severity and mortality. On the other hand, the model indicated the age should not influence susceptibility but should negatively influence severity and mortality, to explain the fact that the age distribution of mortality is similar between the three countries.

Ryosuke Omori, from the Research Center for Zoonoses Control at Hokkaido University, specializes in epidemiological modelling: the use of mathematics and statistics to understand and predict the spread of diseases. Since the outbreak of COVID-19, he has turned his efforts to ascertaining the true extent of the spread of the pandemic in Japan and abroad.
-end-


Hokkaido University

Related Mortality Articles from Brightsurf:

Being in treatment with statins reduces COVID-19 mortality by 22% to 25%
A research by the Universitat Rovira i Virgili (URV) and Pere Virgili Institut (IISPV) led by LluĂ­s Masana has found that people who are being treated with statins have a 22% to 25% lower risk of dying from COVID-19.

Mortality rate higher for US rural residents
A recent study by Syracuse University sociology professor Shannon Monnat shows that mortality rates are higher for U.S. working-age residents who live in rural areas instead of metro areas, and the gap is getting wider.

COVID-19, excess all-cause mortality in US, 18 comparison countries
COVID-19 deaths and excess all-cause mortality in the U.S. are compared with 18 countries with diverse COVID-19 responses in this study.

New analysis shows hydroxychloroquine does not lower mortality in COVID-19 patients, and is associated with increased mortality when combined with the antibiotic azithromycin
A new meta-analysis of published studies into the drug hydroxychloroquine shows that it does not lower mortality in COVID-19 patients, and using it combined with the antibiotic azithromycin is associated with a 27% increased mortality.

Hydroxychloroquine reduces in-hospital COVID-19 mortality
An Italian observational study contributes to the ongoing debate regarding the use of hydroxychloroquine in the current pandemic.

What's the best way to estimate and track COVID-19 mortality?
When used correctly, the symptomatic case fatality ratio (sCFR) and the infection fatality ratio (IFR) are better measures by which to monitor COVID-19 epidemics than the commonly reported case fatality ratio (CFR), according to a new study published this week in PLOS Medicine by Anthony Hauser of the University of Bern, Switzerland, and colleagues.

COVID-19: Bacteriophage could decrease mortality
Bacteriophage can reduce bacterial growth in the lungs, limiting fluid build-up.

COPD and smoking associated with higher COVID-19 mortality
Current smokers and people with chronic obstructive pulmonary disease (COPD) have an increased risk of severe complications and higher mortality with COVID-19 infection, according to a new study published May 11, 2020 in the open-access journal PLOS ONE by Jaber Alqahtani of University College London, UK, and colleagues.

Highest mortality risks for poor and unemployed
Large dataset shows that income, work status and education have a clear influence on mortality in Germany.

Addressing causes of mortality in Zambia
Despite the fact that people in sub-Saharan Africa are now living longer than they did two decades ago, their average life expectancy remains below that of the rest of the world population.

Read More: Mortality News and Mortality Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.