New therapy improves treatment for multiple sclerosis

October 12, 2020

Multiple sclerosis, an autoimmune disease of the central nervous system that affects millions worldwide, can cause debilitating symptoms for those who suffer from it.

Though treatments exist, researchers are still searching for therapies that could more effectively treat the disease, or even prevent it altogether.

Researchers at the Pritzker School of Molecular Engineering (PME) at the University of Chicago have designed a new therapy for multiple sclerosis (MS) by fusing a cytokine to a blood protein. In mice, this combination prevented destructive immune cells from infiltrating the central nervous system and decreased the number of cells that play a role in MS development, leading to fewer symptoms and even disease prevention.

Their results, published October 12 in the journal Nature Biomedical Engineering, could eventually lead to a new therapy for the disease.

"The exciting result is that we can suppress MS symptoms in a way that is more effective than current treatments," said Jeffrey Hubbell, Eugene Bell Professor in Tissue Engineering and co-author of the paper.

Binding therapy to a blood protein

While most immune cells help protect the body from disease, in patients with MS, autoreactive immune cells infiltrate the central nervous system and cause damage. Recent studies have shown that Th17 cells, immune cells that are activated in the body's secondary lymphoid organs, migrate to the brain and play a role in the severity of the disease. Several drugs to treat MS work by sequestering these cells in the lymph nodes and preventing them from targeting tissue, but these drugs can have adverse side effects.

Interleukin-4 (IL-4), an anti-inflammatory cytokine, is known to suppress the genes that cause MS and has been found to suppress the reactivation of Th17 cells. To use it as a potential therapy, researchers needed to find a way to keep the IL-4 in the secondary lymphoid organs to ensure that Th17 cells were suppressed and did not migrate.

To do this, they bound IL-4 to a blood protein and injected it into mice that had experimental autoimmune encephalomyelitis (the mouse model of MS) and found that it caused the IL-4 to stay within the secondary lymphoid organs. The result was reduced infiltration of Th17 cells into the spinal cord. That suppressed the disease and resulted in fewer symptoms.

A potential new way to prevent MS

Researchers also found that the therapy even prevented MS from developing in the majority of mice they treated with it.

"This is the first time anyone has shown how the fusion of this protein to immunosuppressive cytokines can treat and prevent multiple sclerosis," said Jun Ishihara, a former postdoctoral researcher in Hubbell's group and co-corresponding author of the paper.

Though the therapy showed few negative side effects, the researchers will next formally study the toxicity of the therapy in hopes of eventually moving it to human clinical trials.

"This treatment could potentially be self-administered by MS patients at home with an injector pen," Hubbell said. "We think this is imminently translatable and could lead to better quality of life, with fewer symptoms, for those with the disease."
-end-
Other authors on the paper include Prof. Melody A. Swartz, Ako Ishihara, Elyse A. Watkins, Andrew C. Tremain, Mindy Nguyen, Kiyomitsu Katsumata, Aslan Mansurov, Erica Budina, Aaron T. Alpar, Peyman Hosseinchi, Lea Maillat, Joseph W. Reda, Ani Solanki, Takahiro Kageyama, and Eiji Yuba, all of the University of Chicago.

Citation: "Prolonged residence of an albumin-IL-4 fusion protein in secondary lymphoid organs ameliorates experimental autoimmune encephalomyelitis," Ishihara et al, Nature Biomedical Engineering, October 12, 2020. DOI: 10.1038/s41551-020-00627-3

Funding: University of Chicago

University of Chicago

Related Multiple Sclerosis Articles from Brightsurf:

New therapy improves treatment for multiple sclerosis
A new therapy that binds a cytokine to a blood protein shows potential in treating multiple sclerosis, and may even prevent it.

'Reelin' in a new treatment for multiple sclerosis
In an animal model of multiple sclerosis (MS), decreasing the amount of a protein made in the liver significantly protected against development of the disease's characteristic symptoms and promoted recovery in symptomatic animals, UTSW scientists report.

Not all multiple sclerosis-like diseases are alike
Scientists say some myelin-damaging disorders have a distinctive pathology that groups them into a unique disease entity.

New therapeutic options for multiple sclerosis in sight
Strategies for treating multiple sclerosis have so far focused primarily on T and B cells.

Diet has an impact on the multiple sclerosis disease course
The short-chain fatty acid propionic acid influences the intestine-mediated immune regulation in people with multiple sclerosis (MS).

The gut may be involved in the development of multiple sclerosis
It is incompletely understood which factors in patients with multiple sclerosis act as a trigger for the immune system to attack the brain and spinal cord.

Slowing the progression of multiple sclerosis
Over 77,000 Canadians are living with multiple sclerosis, a disease whose causes still remain unknown.

7T MRI offers new insights into multiple sclerosis
Investigators from Brigham and Women's Hospital have completed a new study using 7 Tesla (7T) MRI -- a far more powerful imaging technology -- to further examine LME in MS patients

How to improve multiple sclerosis therapy
Medications currently used to treat multiple sclerosis (MS) can merely reduce relapses during the initial relapsing-remitting phase.

Vaccinations not a risk factor for multiple sclerosis
Data from over 12,000 multiple sclerosis (MS) patients formed the basis of a study by the Technical University of Munich (TUM) which investigated the population's vaccination behavior in relation to MS.

Read More: Multiple Sclerosis News and Multiple Sclerosis Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.