The perfect angle for e-skin energy storage

October 12, 2020

Materials scientists Sungwon Lee and Koteeswara Reddy Nandanapalli at the Daegu Gyeongbuk Institute of Science & Technology (DGIST) developed the fabrication process with colleagues in Korea. A key for success is spraying a specific amount of graphene ink onto flexible substrates at a specific angle and temperature.

Lee says "Demand for remote diagnosis and wearable devices is rapidly increasing and thus, many scientists are focusing their research efforts on developing various electronic skin devices, which requires extremely tiny and flexible energy devices as a power source."

When micro-supercapacitors are charged, positive and negative electrical charges accumulate on their electrodes and stored as energy. These devices have short charging and discharging times compared to batteries, but they can't store as much energy.

Graphene is a promising material for improving their energy storage, as graphene electrodes are highly porous and so provide a larger surface area for the necessary electrostatic reactions to occur.

Another way to improve micro-supercapacitor performance is by fabricating electrodes with interlocking teeth, like those of two combs, increasing the amount of energy that can be stored. But this process is expensive and doesn't work on flexible, temperature-sensitive substrates.

The obvious solution would be to spraying of graphene onto a flexible substrate, but vertical spraying leads to electrodes that aren't very porous and that have compact layers, giving them poor performance.

Lee, Nandanapalli, and their colleagues sprayed graphene ink onto thin, flexible substrates, fabricating a paper-thin micro-supercapacitor with interlocking electrodes and excellent performance.

The trick, they explored, was to spray ten millilitres of graphene ink at a 45° angle and 80°C temperature onto a flexible substrate. This led to the formation of porous, multi-layered electrodes. The team's micro-supercapacitor is 23 micrometres thin, ten times thinner than paper, and retains its mechanical stability after 10,000 bends. It can store around 8.4 microfarads of charge per square centimeter (2 times higher than that of the value reported today) and has a power density of about 1.13 kilowatts per kilogram (4 times higher than that of the Li-ion batteries). The team demonstrated it could be used in wearable devices that adhere to the skin.

"Our work shows that it's possible to reduce the thickness of micro-supercapacitors for use in flexible devices, without degrading their performance," says Lee. The team next aims to improve the micro-supercapacitors' storage capacity and energy consumption to make it feasible for use in real-world electronic skin devices.
-end-


DGIST (Daegu Gyeongbuk Institute of Science and Technology)

Related Graphene Articles from Brightsurf:

How to stack graphene up to four layers
IBS research team reports a novel method to grow multi-layered, single-crystalline graphene with a selected stacking order in a wafer scale.

Graphene-Adsorbate van der Waals bonding memory inspires 'smart' graphene sensors
Electric field modulation of the graphene-adsorbate interaction induces unique van der Waals (vdW) bonding which were previously assumed to be randomized by thermal energy after the electric field is turned off.

Graphene: It is all about the toppings
The way graphene interacts with other materials depends on how these materials are brought into contact with the graphene.

Discovery of graphene switch
Researchers at Japan Advanced Institute of Science and Technology (JAIST) successfully developed the special in-situ transmission electron microscope technique to measure the current-voltage curve of graphene nanoribbon (GNR) with observing the edge structure and found that the electrical conductance of narrow GNRs with a zigzag edge structure abruptly increased above the critical bias voltage, indicating that which they are expected to be applied to switching devices, which are the smallest in the world.

New 'brick' for nanotechnology: Graphene Nanomesh
Researchers at Japan advanced institute of science and technology (JAIST) successfully fabricated suspended graphene nanomesh (GNM) by using the focused helium ion beam technology.

Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.

Graphene Flagship publishes handbook of graphene manufacturing
The EU-funded research project Graphene Flagship has published a comprehensive guide explaining how to produce and process graphene and related materials (GRMs).

How to induce magnetism in graphene
Graphene, a two-dimensional structure made of carbon, is a material with excellent mechani-cal, electronic and optical properties.

Graphene: The more you bend it, the softer it gets
New research by engineers at the University of Illinois combines atomic-scale experimentation with computer modeling to determine how much energy it takes to bend multilayer graphene -- a question that has eluded scientists since graphene was first isolated.

How do you know it's perfect graphene?
Scientists at the US Department of Energy's Ames Laboratory have discovered an indicator that reliably demonstrates a sample's high quality, and it was one that was hiding in plain sight for decades.

Read More: Graphene News and Graphene Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.