For the first time, a five-fold bond

October 13, 2005

Chemists at UC Davis have made the first stable compound with a five-fold bond between two metal atoms. The work with chromium could give researchers new insights into the nature of chemical bonding.

Much of chemistry is about understanding how bonds are made and broken. For most of the history of chemistry, only single, double or triple bonds were known. Multiple bonds are particularly important in carbon chemistry, but only certain metals are theoretically capable of more than triple bonds, said Philip Power, professor of chemistry at UC Davis and senior author on the paper.

The dark red crystals were synthesized by Tailuan (Peter) Nguyen, a graduate student in Power's laboratory. The chromium-based compound is stable at room temperature but decomposes in the presence of water, and spontaneously ignites when exposed to air.

To make the compound, Nguyen and Power attached large carbon-based molecules to chromium atoms, constraining how they could behave. They were then able to coax the chromium atoms to bond with each other. The multiple bonding was confirmed by X-ray crystallography and magnetic measurements.

As far as we know, no comparable compound exists in nature, Power said.

In addition to Nguyen and Power, other authors on the paper were postdoctoral researcher Andrew Sutton, theorist Marcin Brynda and crystallographer James Fettinger at the UC Davis chemistry department; and Gary Long, professor of chemistry at the University of Missouri, Rolla. Peter Klavins and Long Pham at the UC Davis physics department carried out magnetic measurements for the study.

The work is published online in Science Express and will appear in the print version of the journal Science later this year.
-end-


University of California - Davis

Related Chemistry Articles from Brightsurf:

Searching for the chemistry of life
In the search for the chemical origins of life, researchers have found a possible alternative path for the emergence of the characteristic DNA pattern: According to the experiments, the characteristic DNA base pairs can form by dry heating, without water or other solvents.

Sustainable chemistry at the quantum level
University of Pittsburgh Associate Professor John A. Keith is using new quantum chemistry computing procedures to categorize hypothetical electrocatalysts that are ''too slow'' or ''too expensive'', far more thoroughly and quickly than was considered possible a few years ago.

Can ionic liquids transform chemistry?
Table salt is a commonplace ingredient in the kitchen, but a different kind of salt is at the forefront of chemistry innovation.

Principles for a green chemistry future
A team led by researchers from the Yale School of Forestry & Environmental Studies recently authored a paper featured in Science that outlines how green chemistry is essential for a sustainable future.

Sugar changes the chemistry of your brain
The idea of food addiction is a very controversial topic among scientists.

Reflecting on the year in chemistry
A lot can happen in a year, especially when it comes to science.

Better chemistry through tiny antennae
A research team at The University of Tokyo has developed a new method for actively controlling the breaking of chemical bonds by shining infrared lasers on tiny antennae.

Chemistry in motion
For the first time, researchers have managed to view previously inaccessible details of certain chemical processes.

Researchers enrich silver chemistry
Researchers from Russia and Saudi Arabia have proposed an efficient method for obtaining fundamental data necessary for understanding chemical and physical processes involving substances in the gaseous state.

The chemistry behind kibble (video)
Have you ever thought about how strange it is that dogs eat these dry, weird-smelling bits of food for their entire lives and never get sick of them?

Read More: Chemistry News and Chemistry Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.