Enzyme complex thought to promote cancer development can also help prevent it

October 13, 2005

HOUSTON - In a case of basic science detective work, researchers at The University of Texas M. D. Anderson Cancer Center have solved the puzzle of the "inconsistent biomarker" and, in the process, may have discovered an agent that can suppress cancer development.

In the Oct. 14 issue of Science, researchers report that the biomarker in question - an enzyme known as EZH2 - leads a duplicitous life. In its "native" state, the enzyme acts as a suppressor for cancer cell growth that works to inhibit cancer development. But when it is phosphorylated (when a phosphate group is added to the molecule), it turns vicious and acts to promote oncogenesis.

The researchers found the two forms of EZH2 after they identified the "switch" that leads to its phosphorylation - the well-known culprit Akt, an enzyme that has already been associated with cancer development.

The findings explain not only why high levels of EZH2 (when bound to its partner proteins, such as EED) have been shown to identify people who have an aggressive, metastatic form of breast or prostate cancer, but also why elevated levels of EED appear to offer protective effects against virulent lymphoma.

"This has become a big riddle to cancer researchers who want to be able to use EZH2 as a marker upon which to base aggressive treatment," says the study's lead author, Mien-Chie Hung, Ph.D., chair of the Department of Molecular and Cellular Oncology. "We now know there are two different forms of EZH2. The phosphorylated one enhances oncogenesis, whereas the nonphosphorylated EZH2 works to inhibit cell growth."

Their findings are important for a number of different reasons, says Hung.

The first is that phosphorylated EZH2 may provide a much better "biomarker" of aggressive cancer than "total" EZH2 (the sum of both kinds of EZH2 that has been measured in previous biomarker studies) since it is the one with oncogenic properties and appears to help cancer cells invade nearby tissue, he says. "We need more study to determine this, but my prediction is that this form may be a better marker because it enhances the growth of cancer cells and tumors," he says.

The second is that the researchers developed a "mutant" protein that stops EZH2 from being phosphorylated, and they say this molecule might provide the basis for either a small-molecule drug or a gene therapy treatment, Hung says. Indeed, in their study, the research team used the agent to reduce tumor growth in a mouse model of human breast cancer. "We believe that identifying small molecules that could switch between the phosphorylated and nonphosphorylated EZH2 form may provide a screening strategy for cancer treatment," he says.

Finally, the study demonstrates the power of researching what is known as "epigenetics" molecular mechanisms in cancer - the notion that genes and their protein products do not have to be mutated for the disease to develop. In this field of study, researchers look at how beneficial genes/proteins may be silenced by molecules that help handle DNA.

For example, one area of active investigation is the power that histones exert on gene expression. Histones are nature's way of physically controlling unwieldy "naked" DNA by compacting it. But scientists now know that histones themselves can be modified by phosphorylation, as well as through another process known as methylation, in which one atom on a biological molecule is replaced by a different set of chemicals. Histone methylation, in particular, is now regarded as a strong modifier of genetic activity, and can work to either activate or silence gene expression.

The M. D. Anderson researchers conclude that Akt regulates the ability of EZH2 to silence genes that are needed to protect against cancer development. When Akt is activated, it phosphorylates EZH2, making it break free from a particular histone known as H3. If it is not bound to H3, EZH2 cannot methylate H3, thus these silenced genes (which are believed to be oncogenes) are re-expressed. If Akt is not activated, it does not phosphorylate EZH2, and this enzyme remains bound to and methylates H3, allowing it to silence gene expression.

"Our results imply that Akt regulates the methylation activity through phosphorylation of EZH2, which may contribute to oncogenesis," Hung says.
-end-
The study was funded by the National Institutes of Health. In addition to Hung, the study co-authors include: Tai-Lung Cha, M.D., Ph.D.; Binhua P. Zhou, M.D., Ph.D.; Weiya Xia, M.D.; Yadi Wu, Ph.D.; Cheng-Chieh Yang, D.D.S.; Chun-Te Chen; Bo Ping, Ph.D.; and Arie P. Otte, Ph.D. Cha was partially supported by the Tri-Service General Hospital, Taiwan.

University of Texas M. D. Anderson Cancer Center

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.