Researchers at Yale identify a genetic link to Tourette's Syndrome

October 13, 2005

In what may be a major milestone in Tourette's Syndrome (TS) research, scientists at Yale School of Medicine and their colleagues have identified a gene called SLITRK1 that appears to contribute to some cases of TS, according to a report in the October 14 issue of Science.

"We now have rare mutations, expression and functional data, all supporting a role for this gene in Tourette's Syndrome," said senior author Matthew State, M.D., Harris Assistant Professor in the Yale Child Study Center and in the Department of Genetics at Yale. "This finding could provide an important clue in understanding Tourette's on a molecular and cellular level. Confirming this, in even a small number of additional TS patients, will pave the way for a deeper understanding of the disease process."

TS is a relatively common neurological disorder characterized by tics--involuntary, rapid, sudden movements or vocalizations that occur repeatedly in the same way. It affects as many as one out of 100 school age children. The tics begin in mid-childhood and peak at the start of adolescence. TS is not life threatening, but affected children commonly have other neuropsychiatric disorders including ADHD, obsessive-compulsive disorder or depression. State said TS patients swearing uncontrollably is actually uncommon, with only a small percentage of TS patients ever having this symptom.

For years, many researchers sought a single, abnormal gene for TS. Since none was found, it was concluded that multiple genes either cause or contribute to the disorder. While many researchers looked for genetic similarities among large groups of TS patients, State and his team took the opposite approach pioneered by co-author and Yale's Chair of Genetics, Richard Lifton, M.D., of searching for unusual patients with TS. With help from the Tourette Syndrome Association, they found such a case in which a child had TS and carried a chromosomal abnormality.

Working with Yale neurobiologists and co-authors Nenad Sestan and Angeliki Louvi, the team used molecular methods to identify differences in that child's DNA. In particular, they found one gene expressed in the brain near the chromosomal break point. They compared the gene to a wider TS population of 174 people. The team found an abnormal DNA sequence in one family and the identical, very rare change in the DNA sequence in two unrelated people. This second finding was in a non-coding region of the gene that does not directly make protein.

A lead author on the study, graduate student Kenneth Kwan made the key observation that this segment of the gene was likely to be involved in gene regulation through the interaction with small molecules called microRNAs. In a series of experiments, the research team found that this was indeed the case.
-end-
The study was supported in part by the National Institute of Neurological Disorders and Stroke and the National Center for Research Resources.

Other Yale authors who worked with researchers from several other institutions included Jesse F. Abelson, Brian J. O'Roak, Danielle Y. Baek, Althea A. Stillman, Thomas M. Morgan, Mladen-Roko Rasin, Nicole R. Davis, A. Gulhan Ercan-Sencicek, Daniel H. Guez, James F. Leckman, M.D., and Anita Farhi.

Citation: Science Vol. 310, No. 5746 (October 14, 2005)

Yale University

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.