Nav: Home

Conservation targets too small to stop extinction

October 13, 2009

Conservation biologists are setting their minimum population size targets too low to prevent extinction.

That's according to a new study by University of Adelaide and Macquarie University scientists which has shown that populations of endangered species are unlikely to persist in the face of global climate change and habitat loss unless they number around 5000 mature individuals or more.

The findings have been published online in a paper 'Pragmatic population viability targets in a rapidly changing world' in the journal Biological Conservation.

"Conservation biologists routinely underestimate or ignore the number of animals or plants required to prevent extinction," says lead author Dr Lochran Traill, from the University of Adelaide's Environment Institute.

"Often, they aim to maintain tens or hundreds of individuals, when thousands are actually needed. Our review found that populations smaller than about 5000 had unacceptably high extinction rates. This suggests that many targets for conservation recovery are simply too small to do much good in the long run."

A long-standing idea in species restoration programs is the so-called '50/500' rule. This states that at least 50 adults are required to avoid the damaging effects of inbreeding, and 500 to avoid extinctions due to the inability to evolve to cope with environmental change.

"Our research suggests that the 50/500 rule is at least an order of magnitude too small to effectively stave off extinction," says Dr Traill. "This does not necessarily imply that populations smaller than 5000 are doomed. But it does highlight the challenge that small populations face in adapting to a rapidly changing world."

Team member Professor Richard Frankham, from Macquarie University's Department of Biological Sciences, says: "Genetic diversity within populations allows them to evolve to cope with environmental change, and genetic loss equates to fragility in the face of such changes."

Conservation biologists worldwide are battling to prevent a mass extinction event in the face of a growing human population and its associated impact on the planet.

"The conservation management bar needs to be a lot higher," says Dr Traill. "However, we shouldn't necessarily give up on critically endangered species numbering a few hundred of individuals in the wild. Acceptance that more needs to be done if we are to stop 'managing for extinction' should force decision makers to be more explicit about what they are aiming for, and what they are willing to trade off, when allocating conservation funds."
-end-
Other researchers in the study are Associate Professor Corey Bradshaw and Professor Barry Brook, both from the University of Adelaide's Environment Institute. The paper is online at http://dx.doi.org/10.1016/j.biocon.2009.09.001

University of Adelaide

Related Genetic Diversity Articles:

Rare genetic disorders: New approach uses RNA in search for genetic triggers
In about half of all patients with rare hereditary disorders, it is still unclear what position of the genome is responsible for their condition.
Major genetic study identifies 12 new genetic variants for ovarian cancer
A genetic trawl through the DNA of almost 100,000 people, including 17,000 patients with the most common type of ovarian cancer, has identified 12 new genetic variants that increase risk of developing the disease and confirmed the association of 18 of the previously published variants.
Use of fetal genetic sequencing increases the detection rate of genetic findings
In a study to be presented Thursday, Jan. 26, in the oral plenary session at 8 a.m.
Diversity without limits
Now, researchers at Temple and Oakland universities have completed a new tree of prokaryotic life calibrated to time, assembled from 11,784 species of bacteria.
Threatened by diversity
Psychologist Brenda Major identifies what may be a key factor in many white Americans' support for Donald Trump.
Genetic diversity crucial to Florida scrub-jay's survival
Legendary conservationist Aldo Leopold once advised: 'To keep every cog and wheel is the first precaution of intelligent tinkering.' For the endangered Florida scrub-jay, new research shows that saving every last grouping among its small and scattered remnant populations is vital to preserving genetic diversity -- and the long-term survival of the species.
Genetic diversity of enzymes alters metabolic individuality
Scientists from Tohoku University's Tohoku Medical Megabank Organization have published research about genetic diversity and metabolome in Scientific Reports.
Expanded prenatal genetic testing may increase detection of carrier status for potentially serious genetic conditions
In an analysis that included nearly 350,000 adults of diverse racial and ethnic background, expanded carrier screening for up to 94 severe or profound conditions may increase the detection of carrier status for a variety of potentially serious genetic conditions compared with current recommendations from professional societies, according to a study appearing in the Aug.
Fix for 3-billion-year-old genetic error could dramatically improve genetic sequencing
Researchers found a fix for a 3-billion-year-old glitch in one of the major carriers of information needed for life, RNA, which until now produced errors when making copies of genetic information.
Genetic diversity important for plant survival when nitrogen inputs increase
Genetic diversity is important for plant species to persist in Northern forests that experience human nitrogen inputs.

Related Genetic Diversity Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".