Scientific breakthrough can lead to cheaper and environmentally friendly solar cells

October 13, 2015

The hope is to develop efficient and environmentally friendly solar energy applications. Solar energy is an inexhaustible resource that we currently only utilise to a very limited extent. Researchers around the world are therefore trying to find new and more efficient ways to use the energy in sunlight.

The technique the researchers in Lund are working on is solar cells consisting of a thin film of nanostructured titanium dioxide and a dye that captures solar energy. Today, the best solar cells of this type use dyes containing ruthenium metal - a very rare and expensive element.

"Many researchers have tried to replace ruthenium with iron, but without success. All previous attempts have resulted in molecules that convert light energy into heat instead of electrons, which is required for solar cells to generate electricity", says Villy Sundström, Professor of Chemical Physics at Lund University.

Researchers at the Chemistry Department in Lund, in collaboration with Uppsala University, have now successfully produced an iron-based dye that is capable of converting light into electrons with nearly 100 per cent efficiency.

"The advantage of using iron is that it is a common element in nature. It can provide inexpensive and environmentally friendly applications of solar energy in the future", says Kenneth Wärnmark, Professor of Organic Chemistry at Lund University.

By combining the experiments with advanced computer simulations, the researchers are able to understand in detail required design concepts for the iron molecules to work. This knowledge is now being used for further developing the iron-based dyes. More research is needed before the new solar cell dye can be used in practice, but there are high hopes.

"The results of the study suggest that solar cells based on these materials can be at least as effective as those of today that are based on ruthenium or other rare metals", says Villy Sundström.

The discovery could also advance research on solar fuels in which, like in photosynthesis of plants, water and carbon dioxide are turned into energy-rich molecules - solar fuel - with the help of sunlight.

"We envision that the new iron-based molecules could also drive the chemical reactions that create solar fuel", says Kenneth Wärnmark.

The researchers have worked on developing iron-based solar cell dyes for three years and are surprised by how quickly they found a dye that can capture sunlight as efficiently as this.

"Achieving success in research usually takes longer than what we hope for and believe", says Villy Sundström and continues: "For once, it was the opposite!".

The study, which has now been published in Nature Chemistry, is a collaboration between researchers from several divisions at Lund University, as well as researchers from Uppsala University.
-end-
Publication

Iron sensitizer converts light to electrons with 92 % yield. (Nature Chemistry, Published online 12 October 2015)

Lund University

Related Solar Cells Articles from Brightsurf:

Solar cells of the future
Organic solar cells are cheaper to produce and more flexible than their counterparts made of crystalline silicon, but do not offer the same level of efficiency or stability.

A blast of gas for better solar cells
Treating silicon with carbon dioxide gas in plasma processing brings simplicity and control to a key step for making solar cells.

Record efficiency for printed solar cells
A new study reports the highest efficiency ever recorded for full roll-to-roll printed perovskite solar cells.

Next gen solar cells perform better when there's a camera around
A literal ''trick of the light'' can detect imperfections in next-gen solar cells, boosting their efficiency to match that of existing silicon-based versions, researchers have found.

On the trail of organic solar cells' efficiency
Scientists at TU Dresden and Hasselt University in Belgium investigated the physical causes that limit the efficiency of novel solar cells based on organic molecular materials.

Exciting tweaks for organic solar cells
A molecular tweak has improved organic solar cell performance, bringing us closer to cheaper, efficient, and more easily manufactured photovoltaics.

For cheaper solar cells, thinner really is better
Researchers at MIT and at the National Renewable Energy Laboratory (NREL) have outlined a pathway to slashing costs further, this time by slimming down the silicon cells themselves.

Flexible thinking on silicon solar cells
Combining silicon with a highly elastic polymer backing produces solar cells that have record-breaking stretchability and high efficiency.

Perovskite solar cells get an upgrade
Rice University materials scientists find inorganic compounds quench defects in perovskite-based solar cells and expand their tolerance of light, humidity and heat.

Can solar technology kill cancer cells?
Michigan State University scientists have revealed a new way to detect and attack cancer cells using technology traditionally reserved for solar power.

Read More: Solar Cells News and Solar Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.