Nav: Home

Researchers develop DNA-based single-electron electronic devices

October 13, 2016

Nature has inspired generations of people, offering a plethora of different materials for innovations. One such material is the molecule of the heritage, or DNA, thanks to its unique self-assembling properties. Researchers at the Nanoscience Center (NSC) of the University of Jyväskylä and BioMediTech (BMT) of the University of Tampere have now demonstrated a method to fabricate electronic devices by using DNA. The DNA itself has no part in the electrical function, but acts as a scaffold for forming a linear, pearl-necklace-like nanostructure consisting of three gold nanoparticles. The research was funded by the Academy of Finland.

The nature of electrical conduction in nanoscale materials can differ vastly from regular, macroscale metallic structures, which have countless free electrons forming the current, thus making any effect by a single electron negligible. However, even the addition of a single electron into a nanoscale piece of metal can increase its energy enough to prevent conduction. This kind of addition of electrons usually happens via a quantum-mechanical effect called tunnelling, where electrons tunnel through an energy barrier. In this study, the electrons tunnelled from the electrode connected to a voltage source, to the first nanoparticle and onwards to the next particle and so on, through the gaps between them.

"Such single-electron devices have been fabricated within the scale of tens of nanometres by using conventional micro- and nanofabrication methods for more than two decades," says Senior Lecturer Jussi Toppari from the NSC. Toppari has studied these structures already in his PhD work.

"The weakness of these structures has been the cryogenic temperatures needed for them to work. Usually, the operation temperature of these devices scales up as the size of the components decreases. Our ultimate aim is to have the devices working at room temperature, which is hardly possible for conventional nanofabrication methods - so new venues need to be found."

Modern nanotechnology provides tools to fabricate metallic nanoparticles with the size of only a few nanometres. Single-electron devices fabricated from these metallic nanoparticles could function all the way up to room temperature. The NSC has long experience of fabricating such nanoparticles.

"After fabrication, the nanoparticles float in an aqueous solution and need to be organised into the desired form and connected to the auxiliary circuitry," explains researcher Kosti Tapio. "DNA-based self-assembly together with its ability to be linked with nanoparticles offer a very suitable toolkit for this purpose."

Gold nanoparticles are attached directly within the aqueous solution onto a DNA structure designed and previously tested by the involved groups. The whole process is based on DNA self-assembly, and yields countless of structures within a single patch. Ready structures are further trapped for measurements by electric fields.

"The superior self-assembly properties of the DNA, together with its mature fabrication and modification techniques, offer a vast variety of possibilities," says Associate Professor Vesa Hytönen.

Electrical measurements carried out in this study demonstrated for the first time that these scalable fabrication methods based on DNA self-assembly can be efficiently utilised to fabricate single-electron devices that work at room temperature.

The research builds on a long-term multidisciplinary collaboration between the research groups involved. In addition to the above persons, Dr Jenni Leppiniemi (BMT), Boxuan Shen (NSC), and Dr Wolfgang Fritzsche (IPHT, Jena, Germany) contributed to the research. The study was published on 13 October 2016 in Nano Letters. Collaborative travel funding was obtained from DAAD in Germany.
-end-
More information: Link to article in Nano Letters : http://pubs.acs.org/doi/abs/10.1021/acs.nanolett.6b02378
DOI: 10.1021/acs.nanolett.6b02378

Academy of Finland Communications
Joonas Aitonurmi
joonas.aitonurmi@aka.fi
tel. +358 295 335 153

Academy of Finland

Related Nanoparticles Articles:

Chemists perform surgery on nanoparticles
A team of chemists led by Carnegie Mellon's Rongchao Jin has for the first time conducted site-specific surgery on a nanoparticle.
Nanoparticles remain unpredictable
The way that nanoparticles behave in the environment is extremely complex.
Gold standards for nanoparticles
KAUST researchers reveal how small organic 'citrate' ions can stabilize gold nanoparticles, assisting research on the structures' potential.
Lipid nanoparticles for gene therapy
Twenty-five years have passed since the publication of the first work on solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) as a system for delivering drugs.
Nanoparticles hitchhiking their way along strands of hair
In shampoo ads, hair always looks like a shiny, smooth surface.
Better contrast agents based on nanoparticles
Scientists at the University of Basel have developed nanoparticles which can serve as efficient contrast agents for magnetic resonance imaging.
Gentle cancer treatment using nanoparticles works
Cancer treatments based on laser irridation of tiny nanoparticles that are injected directly into the cancer tumor are working and can destroy the cancer from within.
Radiation-guided nanoparticles zero in on metastatic cancer
Zap a tumor with radiation to trigger expression of a molecule, then attack that molecule with a drug-loaded nanoparticle.
Nanoparticles can grow in cubic shape
Use of nanoparticles in many applications, e.g. for catalysis, relies on the surface area of the particles.
Nanoparticles deliver anticancer cluster bombs
Scientists have devised a triple-stage 'cluster bomb' system for delivering the chemotherapy drug cisplatin, via tiny nanoparticles designed to break up when they reach a tumor.

Related Nanoparticles Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...