Nav: Home

MINOS and Daya Bay join forces to narrow the window on sterile neutrinos

October 13, 2016

Two major international collaborations have joined forces to publish a paper that sheds new light on one of the most pressing questions in particle physics: "do sterile neutrinos exist?

Hints of a new type of neutrino beyond the well-known three types (electron, muon, and tau neutrinos) first surfaced in the 1990s when scientists at the Los Alamos National Laboratory were looking for neutrino oscillations - the ability of one type of neutrino to morph into another type. The LSND experiment at Los Alamos announced evidence of muon neutrinos oscillating into electron neutrinos. However, the oscillation occurred much faster than the oscillations discovered by Super-Kamiokande that led to the 2015 Nobel Prize in Physics. If the LSND results are correct and due to neutrino oscillations, the only explanation is the existence of a new, fourth type of neutrino. But this neutrino would have to be much stranger than anything seen before, being sterile, meaning that it does not interact with matter except through gravity. Light sterile neutrinos are also among the leading candidates to resolve some outstanding puzzles in astrophysics and cosmology.

Over the last twenty years, a number of experiments have tried to confirm or refute the LSND findings, but the results have been inconclusive. The new result released by the MINOS and Daya Bay experiments strongly suggests that the ghost-like sterile neutrinos do not explain the LSND result after all.

The MINOS experiment uses an intense beam of muon neutrinos that travels 735 km from the Fermi National Accelerator Laboratory in Chicago to the Soudan Underground Laboratory in northern Minnesota. MINOS has made world-leading measurements to study how these neutrinos disappear as they travel between the two detectors. The existence of a sterile neutrino could cause some of these muon neutrinos to disappear at a faster rate than one would expect if sterile neutrinos do not exist. Scientists working on the MINOS experiment have shown that this does not happen. The Daya Bay experiment looks at electron antineutrinos coming from a nuclear power plant in the Guangdong province of China. Daya Bay observed that some of these antineutrinos disappear, and measured for the first time one of the parameters governing neutrino oscillations, a result garnering the 2016 Breakthrough Prize in Fundamental Physics. A sterile neutrino would affect the rate at which these electron antineutrinos disappear, but the Daya Bay scientists have seen no evidence for this. However, these two results from MINOS and Daya Bay, by themselves, are not enough to address the puzzle that LSND set out almost twenty years ago.

"Neither the MINOS nor Daya Bay disappearance results alone can be compared to the LSND appearance measurements", says En-Chuan Huang of Los Alamos Laboratory and the University of Illinois at Urbana-Champaign, one of the scientists working on the Daya Bay experiment. "Looking at multiple types of neutrinos together gives us a much stronger handle on sterile neutrinos." The LSND experiment saw muon-type antineutrinos turning into electron-type antineutrinos, so to address the LSND observations, scientists must look at both types of neutrinos simultaneously. This is where the collaboration between Daya Bay and MINOS comes in.

"It's not common for two major neutrino experiments to work together this closely", says Adam Aurisano of the University of Cincinnati, one of the MINOS scientists who worked on the result. "But to really make a statement about the LSND evidence for sterile neutrinos, we must take Daya Bay's electron-antineutrino data and the MINOS muon-neutrino data and put them both together into a single analysis". The result is a publication that very strongly excludes most of the possible sterile neutrino oscillation scenarios that could explain the LSND result.

The joint result has significantly shrunk the hiding space for a light sterile neutrino. Both the MINOS and Daya Bay experiments are continuing to analyze more data, and an even more sensitive search for the sterile neutrino is anticipated. "The neutrino is one of the most enigmatic particles we have encountered", says Aurisano, "and history suggests that surprises may await us".
-end-


Chinese Academy of Sciences Headquarters

Related Neutrinos Articles:

Where did the antimatter go? Neutrinos shed promising new light
We live in a world of matter -- because matter overtook antimatter, though they were both created in equal amounts when our universe began.
Strongest evidence yet that neutrinos explain how the universe exists
New data throws more support behind the theory that neutrinos are the reason the universe is dominated by matter.
Why didn't the universe annihilate itself? Neutrinos may hold the answer
New results from an experiment called T2K suggest that physicists are closer than ever before to answering a major mystery: Why didn't the universe annihilate itself in a humungous burst of energy not long after the Big Bang?
T2K insight into the origin of the universe
Lancaster physicists working on the T2K major international experiment in Japan are closing in on the mystery of why there is so much matter in the universe, and so little antimatter.
Radar and ice could help detect an elusive subatomic particle
A new study published today in the journal Physical Review Letters shows, for the first time, an experiment that could detect a class of ultra-high-energy neutrinos using radar echoes.
Radio waves detect particle showers in a block of plastic
A cheap technique could detect neutrinos in polar ice, eventually allowing researchers to expand the energy reach of IceCube without breaking the bank.
APS tip sheet: Harnessing radar echoes for future neutrino detection
New high energy neutrino detection method could lead to a neutrino telescope able to observe neutrinos with energies beyond the current observable range.
Borexino sheds light on solar neutrinos
For more than ten years, the Borexino Detector located 1,400 meters below surface of the Italian Gran Sasso massif has been exploring the interior of our Sun.
A first 'snapshot' of the complete spectrum of neutrinos emitted by the sun
About 99 percent of the sun's energy emitted as neutrinos is produced through nuclear reaction sequences initiated by proton-proton (pp) fusion in which hydrogen is converted into helium, say scientists including physicist Andrea Pocar at the University of Massachusetts Amherst.
Study of high-energy neutrinos again proves Einstein right
A new study by MIT and others proves Einstein is right again.
More Neutrinos News and Neutrinos Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.