A short jump from single-celled ancestors to animals

October 13, 2016

The first animals evolved from their single-celled ancestors around 800 million years ago, but new evidence suggests that this leap to multi-celled organisms in the tree of life may not have been quite as dramatic as scientists once assumed. In a Developmental Cell paper publishing October 13, researchers demonstrate that the single-celled ancestor of animals likely already had some of the mechanisms that animal cells use today to develop into different tissue types.

"We're looking into the past at an evolutionary transition that was important for the origin of all animals," explains Iñaki Ruiz-Trillo, an evolutionary biologist at the Institute of Evolutionary Biology in Barcelona, Spain. "We show that these early organisms already had some behaviors that we once thought were only in multicellular animals. From there, it would have been a simpler evolutionary leap."

The researchers studied a single-celled amoeba called Capsaspora owczarzaki, which is a close relative of today's multi-celled animals. Capsaspora was originally discovered living inside a freshwater snail and has been used by Ruiz-Trillo's group to learn more about animal evolution. Ruiz-Trillo and his team sequenced the Capsaspora genome in an earlier project and discovered that the amoeba contained many genes that, in animals, are related to multicellular functions.

As a single-celled organism, Capsaspora can't have multiple different cell types at the same time like humans can. However, a single Capsaspora does change its cell type over time, transitioning from a lone amoeba to an aggregated colony of cells to a hardy cystic form during its life cycle. This new study explored whether Capsaspora uses the same mechanisms to control cell differentiation over time as animals use to control cell development across different tissues.

In collaboration with the team of Eduard Sabidó at the Proteomics Unit of the Centre for Genomic Regulation and Universitat Pompeu Fabra, the researchers analyzed the proteins in Capsaspora to determine how the organism might be regulating its internal cell processes at different life stages. "Mass spectrometry-based proteomics allows us to measure which proteins are being expressed and how they are being modified," says Sabidó. "Intracellular signaling depends on these protein modifications--so by doing these analysis, we know not only what's in the cell, but also how the cell organizes and communicates internally."

The researchers discovered that from one stage to another, Capsaspora's suite of proteins undergoes extensive changes, and the organism uses many of the same tools as multicellular animals to regulate these cellular processes. For example, Capsaspora activated transcription factors and a tyrosine-kinase signaling system in different stages to regulate protein formation. "These are the same mechanisms that animals use to differentiate one cell type from another, but they haven't been observed in unicellular organisms before," says Ruiz-Trillo.

The presence of these protein-regulating tools in both Capsaspora and animals means that the single-celled ancestor of all animals likely also possessed these systems--and was more complex than scientists have previously given it credit for. "The ancestor already had the tools that the cell needed to differentiate into different tissues," says Sabidó. "The cells that were around before animals were more or less prepared for this leap."
-end-
This work was supported by the European Research Council, the Spanish Ministry of Economy and Competitiveness, the Qatar National Research Fund, the European Union, the Institució Catalana de Recerca i Estudis Avançats, and the Secretaria d'Universitats i Recerca del Departament d'Economia i Coneixement de la Generalitat de Catalunya.

Developmental Cell, Sebé-Pedrós et al.: "High-Throughput Proteomics Reveals the Unicellular Roots of Animal Phosphosignaling and Cell Differentiation" http://www.cell.com/developmental-cell/fulltext/S1534-5807(16)30644-X

Developmental Cell (@Dev_Cell), published by Cell Press, is a bimonthly, cross-disciplinary journal that brings together the fields of cell biology and developmental biology. Articles provide new biological insight of cell proliferation, intracellular targeting, cell polarity, membrane traffic, cell migration, stem cell biology, chromatin regulation and function, differentiation, morphogenesis and biomechanics, and regeneration and cellular homeostasis. Visit: http://www.cell.com/developmental-cell. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Proteins Articles from Brightsurf:

New understanding of how proteins operate
A ground-breaking discovery by Centenary Institute scientists has provided new understanding as to the nature of proteins and how they exist and operate in the human body.

Finding a handle to bag the right proteins
A method that lights up tags attached to selected proteins can help to purify the proteins from a mixed protein pool.

Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.

New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.

Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.

Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.

Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.

Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.

Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.

Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.

Read More: Proteins News and Proteins Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.